Schulinterner Lehrplan des
Dietrich-Bonhoeffer-Gymnasiums Ratingen
zum Kernlehrplan
für die gymnasiale Oberstufe

Physik

1. Einleitung	3
2 Entscheidungen zum Unterricht	5
3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen	81

1. Einleitung

Der Physikunterricht soll dazu beitragen natürlicher Phänomene zu verstehen und technische Systeme und historische Entwicklungen zu beurteilen und darzustellen. Durch seine Inhalte und Methoden fördert diese typische Herangehensweisen an Aufgaben und Probleme.

Auch in der Oberstufe findet der Physikunterricht in den zwei Fachräumen statt. Durch die Kooperation mit den weiteren Gymnasien der Stadt Ratingen ist es nahezu immer möglich, dass sowohl Grundkurse als auch Leistungskurs in Physik angeboten werden kann.

Durch die Anschaffung einiger Schlüsselexperimente (z.B der Franck-Hertz- Versuch), aber auch durch Experimente, die die Lernenden in Kleingruppen durchführen können, sollen die Schülerinnen und Schüler lernen zunehmend wissenschaftlich zu arbeiten. Insbesondere durch die im Doppelstunden-Konzept festgehaltenen Strukturen können Experimente sowohl in der Sekl, als auch in der Sek II in einer einzigen Unterrichtsphase gründlich vorbereitet und ausgewertet werden. Dabei wird sowohl auf den Gebrauch der Fachsprache als auch auf mathematische Methoden und gegebenenfalls auf das Auswerten der Daten mit Excel geachtet.

Ebenfalls werden einige zentralen Experimente der Oberstufe digital mit Hilfe der Onlineversuche der FU Berlin erarbeitet. Dieses wird durch die zur Verfügung stehenden IPads im Klassensatz ermöglicht.

Sowohl der kritische Umgang mit aktuellen Informationen, als auch die geschichtlichen Entwicklungen physikalischer Erkenntnisse und der Umgang mit physikalischen Modellen sollen die Schülerinnen und Schüler erlernen und verstehen.

Jugendliche und junge Erwachsene sollen im Rahmen des Physikunterrichts Interesse daran entwickeln, physikalische Zusammenhänge zu erkennen und zu verstehen und letztendlich Interesse an Naturwissenschaften entwickeln und bestenfalls auch nach ihrer Schulzeit behalten.

2 Entscheidungen zum Unterricht

2.1 Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, <u>sämtliche</u> im Kernlehrplan angeführten Kompetenzen zu erfassen. Dies entspricht der Verpflichtung jeder Lehrkraft, Lerngelegenheiten für ihre Lerngruppe so anzulegen, dass <u>alle</u> Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können.

Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene.

Im "Übersichtsraster Unterrichtsvorhaben" (Kapitel 2.1.1) wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie "Kompetenzen" an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann.

2.1.1 Übersichtsraster Unterrichtsvorhaben

Unterrichtsvorhaben der Einführungsphase		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Bewegte Physik im Alltag Wie lassen sich Bewegungen vermessen und analysieren? Zeitbedarf: 42 Ustd.	Mechanik • Kräfte und Bewegungen • Energie und Impuls	E7 Arbeits- und Denkweisen K4 Argumentation E5 Auswertung E6 Modelle UF2 Auswahl
Auf dem Weg in den Weltraum Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Zeitbedarf: 28 Ustd.	Mechanik • Gravitation • Kräfte und Bewegungen • Energie und Impuls	UF4 Vernetzung E3 Hypothesen E6 Modelle E7 Arbeits- und Denkweisen
Schall	Mechanik	FO Webser become and Management
Wie lässt sich Schall physikalisch untersuchen? Zeitbedarf: 10 Ustd.	Schwingungen und WellenKräfte und BewegungenEnergie und Impuls	E2 Wahrnehmung und Messung UF1 Wiedergabe K1 Dokumentation
Summe Einführungsphase: 80 Stunden		

Unterrichtsvorhaben der Qualifikationsphase (Q1) – GRUNDKURS		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Erforschung des Photons	Quantenobjekte	E2 Wahrnehmung und Messung
Wie kann das Verhalten von Licht beschrieben	Photon (Wellenaspekt)	E5 Auswertung
und erklärt werden?		K3 Präsentation
Zeitbedarf: 14 Ustd.		
Erforschung des Elektrons	Quantenobjekte	UF1 Wiedergabe
Wie können physikalische Eigenschaften wie die	Elektron (Teilchenaspekt)	UF3 Systematisierung
Ladung und die Masse eines Elektrons gemes-		E5 Auswertung
sen werden?		E6 Modelle
Zeitbedarf: 15 Ustd.		
Photonen und Elektronen als Quantenobjekte	Quantenobjekte	E6 Modelle
Kann das Verhalten von Elektronen und Photo-	Elektron und Photon (Teilchenaspekt, Wellen-	E7 Arbeits- und Denkweisen
nen durch ein gemeinsames Modell beschrieben	aspekt)	K4 Argumentation
werden?	Quantenobjekte und ihre Eigenschaften	B4 Möglichkeiten und Grenzen
Zeitbedarf: 5 Ustd.		
Energieversorgung und Transport mit Generato-	Elektrodynamik	UF2 Auswahl
ren und Transformatoren	Spannung und elektrische Energie	UF4 Vernetzung
Wie kann elektrische Energie gewonnen, verteilt	Induktion	E2 Wahrnehmung und Messung
und bereitgestellt werden?	Spannungswandlung	E5 Auswertung
Zeitbedarf: 18 Ustd.		E6 Modelle
		K3 Präsentation
		B1 Kriterien

Wirbelströme im Alltag	Elektrodynamik	UF4 Vernetzung
Wie kann man Wirbelströme technisch nutzen?	Induktion	E5 Auswertung
Zeitbedarf: 4 Ustd.		B1 Kriterien
Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden		

Unterrichtsvorhaben der Qualifikationsphase (Q2) – GRUNDKURS		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte	
Erforschung des Mikro- und Makrokosmos	Strahlung und Materie UF1 Wiedergabe	
Wie gewinnt man Informationen zum Aufbau der	Energiequantelung der Atomhülle	E5 Auswertung
Materie?	Spektrum der elektromagnetischen Strahlung	E2 Wahrnehmung und Messung
Zeitbedarf: 13 Ustd.		
Mensch und Strahlung	Strahlung und Materie	UF1 Wiedergabe
Wie wirkt Strahlung auf den Menschen?	Kernumwandlungen	B3 Werte und Normen
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	B4 Möglichkeiten und Grenzen
	Spektrum der elektromagnetischen Strahlung	
Forschung am CERN und DESY	Strahlung und Materie	UF3 Systematisierung
Was sind die kleinsten Bausteine der Materie?	Standardmodell der Elementarteilchen	E6 Modelle
Zeitbedarf: 6 Ustd.		
Navigationssysteme	Relativität von Raum und Zeit	UF1 Wiedergabe
Welchen Einfluss hat Bewegung auf den Ablauf	Konstanz der Lichtgeschwindigkeit	E6 Modelle
der Zeit?	Zeitdilatation	
Zeitbedarf: 5 Ustd.		
Teilchenbeschleuniger	Relativität von Raum und Zeit	UF4 Vernetzung
Ist die Masse bewegter Teilchen konstant?	Veränderlichkeit der Masse	B1 Kriterien
Zeitbedarf: 6 Ustd.	Energie-Masse Äquivalenz	
Das heutige Weltbild	Relativität von Raum und Zeit	E7 Arbeits- und Denkweisen
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit	K3 Präsentation
Erklärung unserer Welt?	Zeitdilatation	

Zeitbedarf: 2 Ustd.	Veränderlichkeit der Masse	
	Energie-Masse Äquivalenz	
Summe Qualifikationsphase (Q2) – GRUNDKURS: 41 Stunden		

Unterrichtsvorhaben der Qualifikationsphase (Q1) – LEISTUNGSKURS		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Satellitennavigation – Zeitmessung ist nicht ab-	Relativitätstheorie	UF2 Auswahl
solut	Konstanz der Lichtgeschwindigkeit	E6 Modelle
Welchen Einfluss hat Bewegung auf den Ablauf	Problem der Gleichzeitigkeit	
der Zeit?		
Zeitbedarf: 4 Ustd.		
Höhenstrahlung	Relativitätstheorie	E5 Auswertung
Warum erreichen Myonen aus der oberen Atmo-	Zeitdilatation und Längenkontraktion	K3 Präsentation
sphäre die Erdoberfläche?		
Zeitbedarf: 4 Ustd.		
Teilchenbeschleuniger - Warum Teilchen aus	Relativitätstheorie	UF4 Vernetzung
dem Takt geraten	Relativistische Massenzunahme	B1 Kriterien
Ist die Masse bewegter Teilchen konstant?	Energie-Masse-Beziehung	
Zeitbedarf: 8 Ustd.		
Satellitennavigation – Zeitmessung unter dem	Relativitätstheorie	K3 Präsentation
Einfluss von Geschwindigkeit und Gravitation	Der Einfluss der Gravitation auf die Zeitmes-	
Beeinflusst Gravitation den Ablauf der Zeit?	sung	
Zeitbedarf: 4 Ustd.		
Das heutige Weltbild	Relativitätstheorie	B4 Möglichkeiten und Grenzen
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit	
Erklärung unserer Welt?	Problem der Gleichzeitigkeit	
Zeitbedarf: 4 Ustd.	Zeitdilatation und Längenkontraktion	

	Relativistische Massenzunahme	
	Energie-Masse-Beziehung	
	Der Einfluss der Gravitation auf die Zeitmes-	
	sung	
Untersuchung von Elektronen	Elektrik	UF1 Wiedergabe
Wie können physikalische Eigenschaften wie die	Eigenschaften elektrischer Ladungen und ihrer	UF2 Auswahl
Ladung und die Masse eines Elektrons gemes-	Felder	E6 Modelle
sen werden?	Bewegung von Ladungsträgern in elektrischen	K3 Präsentation
Zeitbedarf: 24 Ustd.	und magnetischen Feldern	B1 Kriterien
		B4 Möglichkeiten und Grenzen
Aufbau und Funktionsweise wichtiger Versuchs-	Elektrik	UF2 Auswahl
und Messapparaturen	Eigenschaften elektrischer Ladungen und ihrer	UF4 Vernetzung
Wie und warum werden physikalische Größen	Felder	E1 Probleme und Fragestellungen
meistens elektrisch erfasst und wie werden sie	Bewegung von Ladungsträgern in elektrischen	E5 Auswertung
verarbeitet?	und magnetischen Feldern	E6 Modelle
Zeitbedarf: 22 Ustd.		K3 Präsentation
		B1 Kriterien
		B4 Möglichkeiten und Grenzen
Erzeugung, Verteilung und Bereitstellung elektri-	Elektrik	UF2 Auswahl
scher Energie	Elektromagnetische Induktion	E6 Modelle
Wie kann elektrische Energie gewonnen, verteilt		B4 Möglichkeiten und Grenzen
und bereitgestellt werden?		
Zeitbedarf: 22 Ustd.		
Physikalische Grundlagen der drahtlosen Nach-	Elektrik	UF1 Wiedergabe
richtenübermittlung		UF2 Auswahl

Wie können Nachrichten ohne Materietransport	Elektromagnetische Schwingungen und Wel-	E4 Untersuchungen und Experimente
übermittelt werden?	len	E5 Auswertung
Zeitbedarf: 28 Ustd.		E6 Modelle
		K3 Präsentation
		B1 Kriterien
		B4 Möglichkeiten und Grenzen
Summe Qualifikationsphase (Q1) – LEISTUNGSKURS: 120 Stunden		

Unterrichtsvorhaben der Qualifikationsphase (Q2) – LEISTUNGSKURS		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Erforschung des Photons	Quantenphysik	UF2 Auswahl
Besteht Licht doch aus Teilchen?	Licht und Elektronen als Quantenobjekte	E6 Modelle
Zeitbedarf: 10 Ustd.	Welle-Teilchen-Dualismus	E7 Arbeits- und Denkweisen
	Quantenphysik und klassische Physik	
Röntgenstrahlung, Erforschung des Photons	Quantenphysik	UF1 Wiedergabe
Was ist Röntgenstrahlung?	Licht und Elektronen als Quantenobjekte	E6 Modelle
Zeitbedarf: 9 Ustd.		
Erforschung des Elektrons	Quantenphysik	UF1 Wiedergabe
Kann das Verhalten von Elektronen und Photo-	Welle-Teilchen-Dualismus	K3 Präsentation
nen durch ein gemeinsames Modell beschrieben		
werden?		
Zeitbedarf: 6 Ustd.		
Die Welt kleinster Dimensionen – Mikroobjekte	Quantenphysik	UF1 Wiedergabe
und Quantentheorie	Welle-Teilchen-Dualismus und Wahrschein-	E7 Arbeits- und Denkweisen
Was ist anders im Mikrokosmos?	lichkeitsinterpretation	
Zeitbedarf: 10 Ustd.	Quantenphysik und klassische Physik	
Geschichte der Atommodelle, Lichtquellen und	Atom-, Kern- und Elementarteilchenphysik	UF1 Wiedergabe
ihr Licht	Atomaufbau	E5 Auswertung
Wie gewinnt man Informationen zum Aufbau der		E7 Arbeits- und Denkweisen
Materie?		
Zeitbedarf: 10 Ustd.		

Physik in der Medizin (Bildgebende Verfahren,	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung
Radiologie)	Ionisierende Strahlung	E6 Modelle
Wie nutzt man Strahlung in der Medizin?	Radioaktiver Zerfall	UF4 Vernetzung
Zeitbedarf: 14 Ustd.		
(Erdgeschichtliche) Altersbestimmungen	Atom-, Kern- und Elementarteilchenphysik	UF2 Auswahl
Wie funktioniert die ¹⁴ C-Methode?	Radioaktiver Zerfall	E5 Auswertung
Zeitbedarf: 10 Ustd.		
Energiegewinnung durch nukleare Prozesse	Atom-, Kern- und Elementarteilchenphysik	B1 Kriterien
Wie funktioniert ein Kernkraftwerk?	Kernspaltung und Kernfusion	UF4 Vernetzung
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	
Forschung am CERN und DESY – Elementarteil-	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung
chen und ihre fundamentalen Wechselwirkungen	Elementarteilchen und ihre Wechselwirkungen	K2 Recherche
Was sind die kleinsten Bausteine der Materie?		
Zeitbedarf: 11 Ustd.		
Summe Qualifikationsphase (Q2) – LEISTUNGSKURS: 89 Stunden		

2.1.2 Konkretisierte Unterrichtsvorhaben

2.1.2.1 Einführungsphase

Inhaltsfeld: Mechanik

Kontext: Bewegte Physik im Alltag

Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren?

Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können ...

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen

(K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beschreibung von	stellen Änderungen in den Vorstellungen zu Be-	Text zum Vergleich von Aristote-	Einstieg über den Vergleich der Vorstellun-
Bewegungen im	wegungen und zum Sonnensystem beim Über-	les und Galileis Vorstellungen zu	gen von Aristoteles und Galilei zur Bewe-
Alltag	gang vom Mittelalter zur Neuzeit dar (UF3, E7),	Bewegungen	gung.
	entnehmen Kernaussagen zu naturwissenschaftli-		
	chen Positionen zu Beginn der Neuzeit aus einfa-		Analyse alltäglicher Bewegungsabläufe,
	chen historischen Texten (K2, K4).		Analyse von Kraftwirkungen auf reibungs-
			freie Körper
Aristoteles vs. Ga-			
lilei			Vorstellungen zur Trägheit und zur Fallbe-
(2 Ustd.)		Bilder von verschiedenen Situa-	wegung, Diskussion von Alltagsvorstellun-
		tionen, in denen Kräfte wirken	gen und physikalischen Konzepten
			Wirkungen von Kräften

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beschreibung und	unterscheiden gleichförmige und gleichmäßig be-		Unterscheidung von gleichförmigen und be-
Analyse von linea-	schleunigte Bewegungen und erklären zugrunde-		schleunigten Bewegungen
ren Bewegungen	liegende Ursachen (UF2),	Fahrradfahrt auf Schulhof mit	Fahrradfahrt auf Schulhof mit unterschiedli-
(20 Ustd.)	vereinfachen komplexe Bewegungs- und Gleich-	Stoppuhren	chen Zeitmesspunkten: gleichförmige und
	gewichtszustände durch Komponentenzerlegung	und/oder	beschleunigte Bewegungen
	bzw. Vektoraddition (E1),	Luftkissenfahrbahn ggf. mit digi-	Auswertung z. B. über Excel
	planen selbstständig Experimente zur quantitati-	taler Messwerterfassung (Cas-	Erstellung, Interpretation und Auswertung
	ven und qualitativen Untersuchung einfacher Zu-	sy):	von t-s- und t-v-Diagrammen
	sammenhänge (u.a. zur Analyse von Bewegun-	Messreihe zur gleichförmigen	
	gen), führen sie durch, werten sie aus und bewer-	und gleichmäßig beschleunigten	
	ten Ergebnisse und Arbeitsprozesse (E2, E5, B1),	Bewegung	Erarbeitung der Bewegungsgesetze der
	stellen Daten in Tabellen und sinnvoll skalierten		gleichförmigen und der gleichmäßig be-
	Diagrammen (u. a. t-s- und t-v-Diagramme, Vek-		schleunigten Bewegung und Anwendung z.
	tordiagramme) von Hand und mit digitalen Werk-		B. auf Verkehrssituationen
	zeugen angemessen präzise dar (K1, K3),		
	erschließen und überprüfen mit Messdaten und	Freier Fall	Schlussfolgerungen bezüglich des Einflus-
	Diagrammen funktionale Beziehungen zwischen	Vakuumröhre, Fallversuch mit	ses der Körpermasse bei Fallvorgängen
	mechanischen Größen (E5),	Fangschale, Reaktionszeit mit	
	bestimmen mechanische Größen mit mathemati-	Lineal	Wesentlich: Erarbeitung des Superpositi-
	schen Verfahren und mithilfe digitaler Werkzeuge		onsprinzips (Komponentenzerlegung und
	(u.a. Tabellenkalkulation, GTR) (E6),	Wurfbewegungen	Addition vektorieller Größen)
		Dart, Wurfmaschine	Herleitung der Gleichung für die Bahnkurve

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Newton'sche Ge-	berechnen mithilfe des Newton'schen Kraftgeset-	Luftkissenfahrbahn ggf. mit digi-	Kennzeichen von Laborexperimenten im
setze, Kräfte und	zes Wirkungen einzelner oder mehrerer Kräfte auf	taler Messwerterfassung (Cas-	Vergleich zu natürlichen Vorgängen bespre-
Bewegung	Bewegungszustände und sagen sie unter dem As-	sy):	chen, Ausschalten bzw. Kontrolle bzw. Ver-
(8 Ustd.)	pekt der Kausalität vorher (E6),	Messung der Beschleunigung	nachlässigen von Störungen
	entscheiden begründet, welche Größen bei der	eines Körpers in Abhängigkeit	Erarbeitung des Newton'schen Bewegungs-
	Analyse von Bewegungen zu berücksichtigen oder	von der beschleunigenden Kraft	gesetzes
	zu vernachlässigen sind (E1, E4),		Definition der Kraft als Erweiterung des
	reflektieren Regeln des Experimentierens in der		Kraftbegriffs aus der Sekundarstufe I.
	Planung und Auswertung von Versuchen (u. a.		Berechnung von Kräften und Beschleuni-
	Zielorientierung, Sicherheit, Variablenkontrolle,		gungen an Beispielen aus dem Alltag
	Kontrolle von Störungen und Fehlerquellen) (E2,		
	E4),		
	geben Kriterien (u.a. Objektivität, Reproduzierbar-		
	keit, Widerspruchsfreiheit, Überprüfbarkeit) an, um		
	die Zuverlässigkeit von Messergebnissen und		
	physikalischen Aussagen zu beurteilen, und nut-		
	zen diese bei der Bewertung von eigenen und		
	fremden Untersuchungen (B1),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Energie und Leis-	erläutern die Größen Position, Strecke, Geschwin-		Begriffe der Arbeit und der Energie aus der
tung	digkeit, Beschleunigung, Masse, Kraft, Arbeit,		SI aufgreifen und wiederholen
Impuls	Energie, Impuls und ihre Beziehungen zueinander	Fadenpendel (Schaukel)	Deduktive Herleitung der Formeln für die
(12 Ustd.)	an unterschiedlichen Beispielen (UF2, UF4),		mechanischen Energiearten aus den New-
	analysieren in verschiedenen Kontexten Bewe-		ton'schen Gesetzen und der Definition der
	gungen qualitativ und quantitativ sowohl aus einer		Arbeit
	Wechselwirkungsperspektive als auch aus einer		Energieerhaltung zum Beispiel an Pendel,
	energetischen Sicht (E1, UF1),		Achterbahn, Fahrrad erarbeiten und für Be-
	verwenden Erhaltungssätze (Energie- und Impuls-		rechnungen nutzen
	bilanzen), um Bewegungszustände zu erklären	Newtonpendel	Energetische Analysen in verschiedenen
	sowie Bewegungsgrößen zu berechnen (E3, E6),		Alltagssituationen (z. B. Trampolin, Fahrrad,
	beschreiben eindimensionale Stoßvorgänge mit	Luftkissenfahrbahn ggf. mit digi-	"Feder-Bungee")
	Wechselwirkungen und Impulsänderungen (UF1),	taler Messwerterfassung:	Begriff des Impulses und Impuls als Erhal-
	begründen argumentativ Sachaussagen, Behaup-	Messreihen zu elastischen und	tungsgröße
	tungen und Vermutungen zu mechanischen Vor-	unelastischen Stößen	Elastischer und unelastischer Stoß auch an
	gängen und ziehen dabei erarbeitetes Wissen so-		anschaulichen Beispielen aus dem Alltag
	wie Messergebnisse oder andere objektive Daten		(z.B. Impulserhaltung bei Ballsportarten,
	heran (K4),		Autocrash)
	bewerten begründet die Darstellung bekannter		Hinweis: Erweiterung des Impulsbegriffs am
	mechanischer und anderer physikalischer Phäno-		Ende des Kontextes "Auf dem Weg in den
	mene in verschiedenen Medien (Printmedien, Fil-		Weltraum"
	me, Internet) bezüglich ihrer Relevanz und Rich-		
	tigkeit (K2, K4),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
42 Ustd.	Summe		

Kontext: Auf dem Weg in den Weltraum

Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem?

Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kreisbewegungen	analysieren und berechnen auftretende Kräfte bei	Vorführung einer Kreisbewe-	Beschreibung von gleichförmigen Kreisbe-
(8 Ustd.)	Kreisbewegungen (E6),	gung (Kugel an Faden, rotieren-	wegungen, Winkelgeschwindigkeit, Periode,
		der Hebel)	Bahngeschwindigkeit, Frequenz
			Experimentell-erkundende Erarbeitung der
			Formeln für Zentripetalkraft und Zentripetal-
		Messung der Zentralkraft	beschleunigung:
		An dieser Stelle sollen das ex-	Herausstellen der Notwendigkeit der Kon-
		perimentell-erkundende Verfah-	stanthaltung der restlichen Größen bei der
		ren und das deduktive Verfah-	experimentellen Bestimmung einer von
		ren zur Erkenntnisgewinnung	mehreren anderen Größen abhängigen
		am Beispiel der Herleitung der	physikalischen Größe (hier bei der Bestim-
		Gleichung für die Zentripetalkraft	mung der Zentripetalkraft in Abhängigkeit
		als zwei wesentliche Erkennt-	von der Masse des rotierenden Körpers)
		nismethoden der Physik bear-	Deduktion der Formel für die Zentripetalbe-
		beitet werden.	schleunigung und -kraft
Aristotelisches	stellen Änderungen in den Vorstellungen zu Be-	Internetrecherche:	Historie: Verschiedene Möglichkeiten der
Weltbild, Koperni-	wegungen und zum Sonnensystem beim Über-	Geozentrisches und heliozentri-	Interpretation der Beobachtungen
kanische Wende	gang vom Mittelalter zur Neuzeit dar (UF3, E7),	sches Planetenmodell	
(2 Ustd.)			

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Planetenbewe-	ermitteln mithilfe der Kepler'schen Gesetze und	Schülerreferate:	Einsatz z. B. von Powerpoint, Apps, Anima-
gungen und	des Gravitationsgesetzes astronomische Größen	Keplergesetze	tionen, Videos
Kepler'sche Ge-	(E6),	Gravitationsgesetz	
setze	beschreiben an Beispielen Veränderungen im	Arbeiten von Kopernikus,	
(5 Ustd.)	Weltbild und in der Arbeitsweise der Naturwissen-	Kepler, Galilei und Newton im	
	schaften, die durch die Arbeiten von Kopernikus,	Vergleich	
	Kepler, Galilei und Newton initiiert wurden (E7,		
	B3).		
Newton'sches	beschreiben Wechselwirkungen im Gravitations-	Arbeit mit dem Lehrbuch, Re-	Newton'sches Gravitationsgesetz als Zu-
Gravitationsge-	feld und verdeutlichen den Unterschied zwischen	cherche im Internet	sammenfassung bzw. Äquivalent der
setz, Gravitations-	Feldkonzept und Kraftkonzept (UF2, E6),		Kepler'schen Gesetze
feld			"Wiegen" der Erde, Massenbestimmungen
(6 Ustd.)			im Planetensystem, Fluchtgeschwindigkei-
			ten
			Bahnen von Satelliten und Planeten
			Feldbegriff diskutieren, Definition der Feld-
			stärke über Messvorschrift "Kraft auf Probe-
			körper"

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Impuls und Impul-	verwenden Erhaltungssätze (Energie- und Impuls-	Skateboards, Rollbrett, Luftbal-	Impuls und Rückstoß
serhaltung, Rück-	bilanzen), um Bewegungszustände zu erklären	lon fliegen lassen	
stoß	sowie Bewegungsgrößen zu berechnen (E3, E6),	Wasserrakete	Bewegung einer Rakete im luftleeren Raum
(6 Ustd.)	erläutern unterschiedliche Positionen zum Sinn	Internetrecherchen in zwei	Debatte über wissenschaftlichen Wert sowie
	aktueller Forschungsprogramme (z.B. Raumfahrt,	Gruppen (Pro/Kontra) zu aktuel-	Kosten und Nutzen ausgewählter Program-
	Mobilität) und beziehen Stellung dazu (B2, B3).	len Projekten von ESA und DLR,	me
		auch zur Finanzierung mit an-	
		schließender Podiumsdiskussi-	
		on	
28 Ustd.	Summe		

Kontext: Schall

Leitfrage: Wie lässt sich Schall physikalisch untersuchen?

Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern.

(K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Entstehung und	erklären qualitativ die Ausbreitung mechanischer	Auswahl aus:	Erarbeitung der Grundgrößen zur Beschrei-
Ausbreitung von	Wellen (Transversal- oder Longitudinalwelle) mit	Lineal auf Tischplatte, Stimmga-	bung von Schwingungen und Wellen:
Schwingungen	den Eigenschaften des Ausbreitungsmediums	beln, Lautsprecher, Frequenz-	Frequenz, Periodendauer und Amplitude
und Wellen	(E6),	generator, rußgeschwärzte	
(4 Ustd.)		Glasplatte und Schreibstimmga-	
		bel, Klingel und Vakuumglocke,	
		gekoppelte Fadenpendel	
Modelle der Wel-	beschreiben Schwingungen und Wellen als Stö-	Auswahl aus:	Entstehung von Longitudinal- und Transver-
lenausbreitung	rungen eines Gleichgewichts und identifizieren die	Lange Schraubenfeder, Wellen-	salwellen
(5 Ustd.)	dabei auftretenden Kräfte (UF1, UF4),	wanne, Projektion von Kreis-	Ausbreitungsmedium, Möglichkeit der Aus-
		scheibe und Federpendel, Com-	breitung longitudinaler. bzw. transversaler
		putersimulation, Wellenmaschi-	Schallwellen in Gasen, Flüssigkeiten und
		ne	festen Körpern
Erzwungene	erläutern das Auftreten von Resonanz mithilfe von	2 Stimmgabeln auf Resonanz-	Resonanz (auch Tacoma-Bridge, Millenni-
Schwingungen	Wechselwirkung und Energie (UF1).	körper, die sich gegenseitig an-	um-Bridge)
und Resonanz		regen	
(1 Ustd.)		Video	
10 Ustd.	Summe		

2.1.2.2 Qualifikationsphase: Grundkurs

Inhaltsfeld: Quantenobjekte (GK)

Kontext: Erforschung des Photons

Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Inhaltliche Schwerpunkte: Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beugung und In-	veranschaulichen mithilfe der Wellenwanne quali-	Doppelspalt und Gitter, Wellen-	Ausgangspunkt: Beugung von Laserlicht
terferenz Lichtwel-	tativ unter Verwendung von Fachbegriffen auf der	wanne	Modellbildung mit Hilfe der Wellenwanne
lenlänge, Lichtfre-	Grundlage des Huygens'schen Prinzips Kreiswel-	quantitative Experimente mit	(ggf. als Schülerpräsentation)
quenz, Kreiswel-	len, ebene Wellen sowie die Phänomene Beu-	Laserlicht	Bestimmung der Wellenlängen von Licht mit
len,	gung, Interferenz, Reflexion und Brechung (K3),		Doppelspalt und Gitter
ebene Wellen,	bestimmen Wellenlängen und Frequenzen von		Sehr schön sichtbare Beugungsphänomene
Beugung, Bre-	Licht mit Doppelspalt und Gitter (E5),		finden sich vielfach bei Meereswellen (s.
chung			Google-Earth)
(7 Ustd.)			
Quantelung der	demonstrieren anhand eines Experiments zum	Photoeffekt	Roter Faden: Von Hallwachs bis Elektro-
Energie von Licht,	Photoeffekt den Quantencharakter von Licht und	Hallwachsversuch	nenbeugung
Austrittsarbeit	bestimmen den Zusammenhang von Energie, Wel-	Vakuumphotozelle	Bestimmung des Planck'schen Wir-
(7 Ustd.)	lenlänge und Frequenz von Photonen sowie die		kungsquantums und der Austrittsarbeit
	Austrittsarbeit der Elektronen (E5, E2),		Hinweis: Formel für die max. kinetische
			Energie der Photoelektronen wird zunächst
			vorgegeben.
			Der Zusammenhang zwischen Spannung,
			Ladung und Überführungsarbeit wird eben-
			falls vorgegeben und nur plausibel gemacht.
			Er muss an dieser Stelle nicht grundlegend
			hergeleitet werden
14 Ustd.	Summe		

Kontext: Erforschung des Elektrons

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Elementarladung	erläutern anhand einer vereinfachten Version	schwebender Wattebausch	Begriff des elektrischen Feldes in Analogie zum
(5 Ustd.)	des Millikanversuchs die grundlegenden Ideen	Millikanversuch	Gravitationsfeld besprechen, Definition der Feld-
	und Ergebnisse zur Bestimmung der Elementar-	Schwebefeldmethode (keine	stärke über die Kraft auf einen Probekörper, in
	ladung (UF1, E5),	Stokes'sche Reibung)	diesem Fall die Ladung
	untersuchen, ergänzend zum Realexperiment,	Auch als Simulation möglich	Homogenes elektrisches Feld im Plattenkonden-
	Computersimulationen zum Verhalten von		sator, Zusammenhangs zwischen Feldstärke im
	Quantenobjekten (E6).		Plattenkondensator, Spannung und Abstand der
			Kondensatorplatten vorgeben und durch Ausei-
			nanderziehen der geladenen Platten demonstrie-
			ren

Elektronenmasse	beschreiben Eigenschaften und Wirkungen ho-	e/m-Bestimmung mit dem Fa-	Einführung der 3-Finger-Regel und Angabe der
(7 Ustd.)	mogener elektrischer und magnetischer Felder	denstrahlrohr und Helmholtz-	Gleichung für die Lorentzkraft:
	und erläutern deren Definitionsgleichungen.	spulenpaar	Einführung des Begriffs des magnetischen Fel-
	(UF2, UF1),	auch Ablenkung des Strahls	des (in Analogie zu den beiden anderen Feldern
	bestimmen die Geschwindigkeitsänderung eines	mit Permanentmagneten (Lor-	durch Kraft auf Probekörper, in diesem Fall be-
	Ladungsträgers nach Durchlaufen einer elektri-	entzkraft)	wegte Ladung oder stromdurchflossener Leiter)
	schen Spannung (UF2),	evtl. Stromwaage bei hinrei-	und des Zusammenhangs zwischen magneti-
	modellieren Vorgänge im Fadenstrahlrohr	chend zur Verfügung stehen-	scher Kraft, Leiterlänge und Stromstärke.
	(Energie der Elektronen, Lorentzkraft) mathema-	der Zeit)	Vertiefung des Zusammenhangs zwischen
	tisch, variieren Parameter und leiten dafür de-	Messung der Stärke von Mag-	Spannung, Ladung und Überführungsarbeit am
	duktiv Schlussfolgerungen her, die sich experi-	netfeldern mit der Hallsonde	Beispiel Elektronenkanone.
	mentell überprüfen lassen, und ermitteln die		
	Elektronenmasse (E6, E3, E5),		
Streuung von	erläutern die Aussage der de Broglie-	Experiment zur Elektronen-	Veranschaulichung der Bragg-Bedingung analog
Elektronen an	Hypothese, wenden diese zur Erklärung des	beugung an polykristallinem	zur Gitterbeugung
Festkörpern, de	Beugungsbildes beim Elektronenbeugungsexpe-	Graphit	
Broglie-	riment an und bestimmen die Wellenlänge der		
Wellenlänge	Elektronen (UF1, UF2, E4).		
(3 Ustd.)			
15 Ustd.	Summe		I
1		1	

Kontext: Photonen und Elektronen als Quantenobjekte

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden?

Inhaltliche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Licht und Materie	erläutern am Beispiel der Quantenobjekte Elekt-	Computersimulation	Reflexion der Bedeutung der Experimente für die
(5 Ustd.)	ron und Photon die Bedeutung von Modellen als	Doppelspalt	Entwicklung der Quantenphysik
	grundlegende Erkenntniswerkzeuge in der Phy-	Photoeffekt	
	sik (E6, E7),		
	verdeutlichen die Wahrscheinlichkeitsinterpreta-		
	tion für Quantenobjekte unter Verwendung ge-		
	eigneter Darstellungen (Graphiken, Simulations-		
	programme) (K3).		
	zeigen an Beispielen die Grenzen und Gültig-		
	keitsbereiche von Wellen- und Teilchenmodellen		
	für Licht und Elektronen auf (B4, K4),		
	beschreiben und diskutieren die Kontroverse um		
	die Kopenhagener Deutung und den Welle-		
	Teilchen-Dualismus (B4, K4).		
5 Ustd.	Summe		

Inhaltsfeld: Elektrodynamik (GK)

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Spannung und elektrische Energie, Induktion, Spannungswandlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Wandlung von me-	erläutern am Beispiel der Leiterschaukel das	bewegter Leiter im (homoge-	Definition der Spannung und Erläuterung anhand
chanischer in elekt-	Auftreten einer Induktionsspannung durch die	nen) Magnetfeld -	von Beispielen für Energieumwandlungsprozes-
rische Energie:	Wirkung der Lorentzkraft auf bewegte La-	"Leiterschaukelversuch"	se bei Ladungstransporten, Anwendungsbeispie-
Elektromagnetische	dungsträger (UF1, E6),	Messung von Spannungen	le.
Induktion	definieren die Spannung als Verhältnis von	mit diversen Spannungs-	Das Entstehen einer Induktionsspannung bei
Induktionsspannung	Energie und Ladung und bestimmen damit	messgeräten (nicht nur an	bewegtem Leiter im Magnetfeld wird mit Hilfe der
(5 Ustd.)	Energien bei elektrischen Leitungsvorgängen	der Leiterschaukel)	Lorentzkraft erklärt, eine Beziehung zwischen
	(UF2),	Gedankenexperimente zur	Induktionsspannung, Leitergeschwindigkeit und
	bestimmen die relative Orientierung von Bewe-	Überführungsarbeit, die an	Stärke des Magnetfeldes wird (deduktiv) herge-
	gungsrichtung eines Ladungsträgers, Magnet-	einer Ladung verrichtet wird.	leitet.
	feldrichtung und resultierender Kraftwirkung	Deduktive Herleitung der Be-	Die an der Leiterschaukel registrierten (zeitab-
	mithilfe einer Drei-Finger-Regel (UF2, E6),	ziehung zwischen U, v und B.	hängigen) Induktionsspannungen werden mit
	werten Messdaten, die mit einem Oszilloskop		Hilfe der hergeleiteten Beziehung auf das Zeit-
	bzw. mit einem Messwerterfassungssystem		Geschwindigkeit-Gesetz des bewegten Leiters
	gewonnen wurden, im Hinblick auf Zeiten, Fre-		zurückgeführt.
	quenzen und Spannungen aus (E2, E5).		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Technisch praktikab-	recherchieren bei vorgegebenen Fragestellun-	Internetquellen, Lehrbücher,	Hier bietet es sich an, arbeitsteilige Präsentatio-
le Generatoren:	gen historische Vorstellungen und Experimente	Firmeninformationen, Filme	nen auch unter Einbezug von Realexperimenten
Erzeugung sinus-	zu Induktionserscheinungen (K2),	und Applets zum Generator-	anfertigen zu lassen.
förmiger Wechsel-	erläutern adressatenbezogen Zielsetzungen,	prinzip	
spannungen	Aufbauten und Ergebnisse von Experimenten	Experimente mit drehenden	
(4 Ustd.)	im Bereich der Elektrodynamik jeweils sprach-	Leiterschleifen in (nähe-	
	lich angemessen und verständlich (K3),	rungsweise homogenen)	
		Magnetfeldern, Wechsel-	
		stromgeneratoren	
	erläutern das Entstehen sinusförmiger Wech-	Messung und Registrierung	Der Zusammenhang zwischen induzierter Span-
	selspannungen in Generatoren (E2, E6),	von Induktionsspannungen	nung und zeitlicher Veränderung der senkrecht
	werten Messdaten, die mit einem Oszilloskop	mit Oszilloskop und digita-	vom Magnetfeld durchsetzten Fläche wird "de-
	bzw. mit einem Messwerterfassungssystem	lem Messwerterfassungs-	duktiv" erschlossen.
	gewonnen wurden, im Hinblick auf Zeiten, Fre-	system	
	quenzen und Spannungen aus (E2, E5).		
	führen Induktionserscheinungen an einer Lei-		
	terschleife auf die beiden grundlegenden Ursa-		
	chen "zeitlich veränderliches Magnetfeld" bzw.		
	"zeitlich veränderliche (effektive) Fläche" zu-		
	rück (UF3, UF4),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Nutzbarmachung	erläutern adressatenbezogen Zielsetzungen,	diverse "Netzteile" von Elekt-	Der Transformator wird eingeführt und die Über-
elektrischer Energie	Aufbauten und Ergebnisse von Experimenten	ro-Kleingeräten (mit klassi-	setzungsverhältnisse der Spannungen experi-
durch "Transforma-	im Bereich der Elektrodynamik jeweils sprach-	schem Transformator)	mentell ermittelt. Dies kann auch durch einen
tion"	lich angemessen und verständlich (K3),	Internetquellen, Lehrbücher,	Schülervortrag erfolgen (experimentell und me-
Transformator	ermitteln die Übersetzungsverhältnisse von	Firmeninformationen	dial gestützt).
(5 Ustd.)	Spannung und Stromstärke beim Transforma-		
	tor (UF1, UF2).	Demo-Aufbautransformator	
	geben Parameter von Transformatoren zur ge-	mit geeigneten Messgeräten	
	zielten Veränderung einer elektrischen Wech-		
	selspannung an (E4),	ruhende Induktionsspule in	Der Zusammenhang zwischen induzierter Span-
	werten Messdaten, die mit einem Oszilloskop	wechselstromdurchflossener	nung und zeitlicher Veränderung der Stärke des
	bzw. mit einem Messwerterfassungssystem	Feldspule - mit Messwerter-	magnetischen Feldes wird experimentell im Leh-
	gewonnen wurden, im Hinblick auf Zeiten, Fre-	fassungssystem zur zeitauf-	rerversuch erschlossen.
	quenzen und Spannungen aus (E2, E5).	gelösten Registrierung der	Die registrierten Messdiagramme werden von
	führen Induktionserscheinungen an einer Lei-	Induktionsspannung und des	den SuS eigenständig ausgewertet.
	terschleife auf die beiden grundlegenden Ursa-	zeitlichen Verlaufs der Stärke	
	chen "zeitlich veränderliches Magnetfeld" bzw.	des magnetischen Feldes	
	"zeitlich veränderliche (effektive) Fläche" zu-		
	rück (UF3, UF4),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Energieerhaltung	verwenden ein physikalisches Modellexperi-	Modellexperiment (z.B. mit	Hier bietet sich ein arbeitsteiliges Gruppenpuzzle
Ohm´sche "Verluste"	ment zu Freileitungen, um technologische Prin-	Hilfe von Aufbautransformato-	an, in dem Modellexperimente einbezogen wer-
(4 Ustd.)	zipien der Bereitstellung und Weiterleitung von	ren) zur Energieübertragung	den.
	elektrischer Energie zu demonstrieren und zu	und zur Bestimmung der	
	erklären (K3),	"Ohm'schen Verluste" bei der	
	bewerten die Notwendigkeit eines geeigneten	Übertragung elektrischer	
	Transformierens der Wechselspannung für die	Energie bei unterschiedlich	
	effektive Übertragung elektrischer Energie über	hohen Spannungen	
	große Entfernungen (B1),		
	zeigen den Einfluss und die Anwendung physi-		
	kalischer Grundlagen in Lebenswelt und Tech-		
	nik am Beispiel der Bereitstellung und Weiter-		
	leitung elektrischer Energie auf (UF4),		
	beurteilen Vor- und Nachteile verschiedener		
	Möglichkeiten zur Übertragung elektrischer		
	Energie über große Entfernungen (B2, B1, B4).		
18 Ustd.	Summe		

Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Lenz'sche Regel	erläutern anhand des Thomson´schen Ring-	Freihandexperiment: Unter-	Ausgehend von kognitiven Konflikten bei den
(4 Ustd.)	versuchs die Lenz'sche Regel (E5, UF4),	suchung der Relativbewe-	Ringversuchen wird die Lenz´sche Regel erar-
	bewerten bei technischen Prozessen das Auf-	gung eines aufgehängten	beitet
	treten erwünschter bzw. nicht erwünschter	Metallrings und eines starken	
	Wirbelströme (B1),	Stabmagneten	
		Thomson'scher Ringversuch	Erarbeitung von Anwendungsbeispielen zur
		diverse technische und spie-	Lenz'schen Regel (z.B. Wirbelstrombremse bei
		lerische Anwendungen, z.B.	Fahrzeugen oder an der Kreissäge)
		Dämpfungselement an einer	
		Präzisionswaage, Wir-	
		belstrombremse, "fallender	
		Magnet" im Alu-Rohr.	
4 Ustd.	Summe		

Inhaltsfeld: Strahlung und Materie (GK)

Kontext: Erforschung des Mikro- und Makrokosmos

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kern-Hülle-Modell	erläutern, vergleichen und beurteilen Modelle	Literaturrecherche, Schulbuch	Ausgewählte Beispiele für Atommodelle
(2 Ustd.)	zur Struktur von Atomen und Materiebaustei-		
	nen (E6, UF3, B4),		
Energieniveaus der	erklären die Energie absorbierter und emittier-	Erzeugung von Linienspek-	Deutung der Linienspektren
Atomhülle	ter Photonen mit den unterschiedlichen Ener-	tren mithilfe von Gasentla-	
(2 Ustd.)	gieniveaus in der Atomhülle (UF1, E6),	dungslampen	

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Quantenhafte	erläutern die Bedeutung von Flammenfärbung	Franck-Hertz-Versuch	Es kann das Bohr'sche Atommodell angespro-
Emission und Ab-	und Linienspektren bzw. Spektralanalyse, die		chen werden (ohne Rechnungen)
sorption von Pho-	Ergebnisse des Franck-Hertz-Versuches sowie		
tonen	die charakteristischen Röntgenspektren für die		
(3 Ustd.)	Entwicklung von Modellen der diskreten Ener-		
	giezustände von Elektronen in der Atomhülle		
	(E2, E5, E6, E7),		
Röntgenstrahlung	erläutern die Bedeutung von Flammenfärbung	Aufnahme von Röntgenspek-	Im Zuge der "Elemente der Quantenphysik"
(3 Ustd.)	und Linienspektren bzw. Spektralanalyse, die	tren (kann mit interaktiven	kann die Röntgenstrahlung bereits als Umkeh-
	Ergebnisse des Franck-Hertz-Versuches sowie	Bildschirmexperimenten (IBE)	rung des Photoeffekts bearbeitet werden
	die charakteristischen Röntgenspektren für die	oder Lehrbuch geschehen,	Mögliche Ergänzungen: Bremsspektrum mit h-
	Entwicklung von Modellen der diskreten Ener-	falls keine Schulröntgenein-	Bestimmung / Bragg-Reflexion
	giezustände von Elektronen in der Atomhülle	richtung vorhanden ist)	
	(E2, E5, E6, E7),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Sternspektren und	interpretieren Spektraltafeln des Sonnenspekt-	Flammenfärbung	u. a. Durchstrahlung einer Na-Flamme mit Na-
Fraunhoferlinien	rums im Hinblick auf die in der Sonnen- und	Darstellung des Sonnenspekt-	und Hg-Licht (Schattenbildung)
(3 Ustd.)	Erdatmosphäre vorhandenen Stoffe (K3, K1),	rums mit seinen Fraunhoferli-	
	erklären Sternspektren und Fraunhoferlinien	nien	
	(UF1, E5, K2),	Spektralanalyse	
	stellen dar, wie mit spektroskopischen Metho-		
	den Informationen über die Entstehung und		
	den Aufbau des Weltalls gewonnen werden		
	können (E2, K1),		
13 Ustd.	Summe		

Kontext: Mensch und Strahlung

Leitfrage: Wie wirkt Strahlung auf den Menschen?

Inhaltliche Schwerpunkte: Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Strahlungsarten	unterscheiden α -, β -, γ -Strahlung und Röntgen-	Recherche	Wiederholung und Vertiefung aus der Sek. I
(2 Ustd.)	strahlung sowie Neutronen- und Schwerionen-		
	strahlung (UF3),	Absorptionsexperimente zu	
	erläutern den Nachweis unterschiedlicher Arten	α-, β-, γ-Strahlung	
	ionisierender Strahlung mithilfe von Absorptions-		
	experimenten (E4, E5),		
	bewerten an ausgewählten Beispielen Rollen		
	und Beiträge von Physikerinnen und Physikern		
	zu Erkenntnissen in der Kern- und Elementarteil-		
	chenphysik (B1, B3),		
Elementumwand-	erläutern den Begriff Radioaktivität und be-	Nuklidkarte	
lung	schreiben zugehörige Kern-		
(1 Ustd.)	umwandlungsprozesse (UF1, K1),		
Detektoren	erläutern den Aufbau und die Funktionsweise	Geiger-Müller-Zählrohr	An dieser Stelle können Hinweise auf Halb-
(3 Ustd.)	von Nachweisgeräten für ionisierende Strahlung		leiterdetektoren gegeben werden.
	(Geiger-Müller-Zählrohr) und bestimmen Halb-		
	wertszeiten und Zählraten (UF1, E2),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Biologische Wirkung	beschreiben Wirkungen von ionisierender und	ggf. Einsatz eines Films / eines	Sinnvolle Beispiele sind die Nutzung von
ionisierender Strah-	elektromagnetischer Strahlung auf Materie und	Videos	ionisierender Strahlung zur Diagnose und
lung und Energie-	lebende Organismen (UF1),		zur Therapie bei Krankheiten des Menschen
aufnahme im	bereiten Informationen über wesentliche biolo-		(von Lebewesen) sowie zur Kontrolle tech-
menschlichen Ge-	gisch-medizinische Anwendungen und Wirkun-		nische Anlagen.
webe	gen von ionisierender Strahlung für unterschied-		
Dosimetrie	liche Adressaten auf (K2, K3, B3, B4),		
(3 Ustd.)	begründen in einfachen Modellen wesentliche		
	biologisch-medizinische Wirkungen von ionisie-		
	render Strahlung mit deren typischen physikali-		
	schen Eigenschaften (E6, UF4),		Erläuterung von einfachen dosimetrischen
			Begriffe: Aktivität, Energiedosis, Äquivalent-
	erläutern das Vorkommen künstlicher und natür-		dosis
	licher Strahlung, ordnen deren Wirkung auf den		
	Menschen mithilfe einfacher dosimetrischer Be-		
	griffe ein und bewerten Schutzmaßnahmen im		
	Hinblick auf die Strahlenbelastungen des Men-		
	schen im Alltag (B1, K2).		
	bewerten Gefahren und Nutzen der Anwendung		
	physikalischer Prozesse, u. a. von ionisierender		
	Strahlung, auf der Basis medizinischer, gesell-		
44	schaftlicher und wirtschaftlicher Gegebenheiten		
	(B3, B4)		
	bewerten Gefahren und Nutzen der Anwendung		
	ionisierender Strahlung unter Abwägung unter-		
	schiedlicher Kriterien (B3, B4),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
9 Ustd.	Summe		

Kontext: Forschung am CERN und DESY

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernbausteine und	erläutern mithilfe des aktuellen Standardmodells	In diesem Bereich sind i. d. R.	
Elementarteilchen	den Aufbau der Kernbausteine und erklären mit	keine Realexperimente für	
(4 Ustd.)	ihm Phänomene der Kernphysik (UF3, E6),	Schulen möglich.	
	erklären an einfachen Beispielen Teilchenum-	Es z.B. kann auf Internetseiten	
	wandlungen im Standardmodell (UF1).	des CERN und DESY zurück-	Mögliche Schwerpunktsetzung:
	recherchieren in Fachzeitschriften, Zeitungsarti-	gegriffen werden.	Paarerzeugung, Paarvernichtung,
	keln bzw. Veröffentlichungen von Forschungsein-		
	richtungen zu ausgewählten aktuellen Entwick-		
	lungen in der Elementarteilchenphysik (K2).		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
(Virtuelles) Photon	vergleichen in Grundprinzipien das Modell des	Lehrbuch, Animationen	Veranschaulichung der Austauschwechsel-
als Austauschteil-	Photons als Austauschteilchen für die elektro-		wirkung mithilfe geeigneter mechanischer
chen der elektro-	magnetische Wechselwirkung exemplarisch für		Modelle, auch Problematik dieser Modelle
magnetischen	fundamentale Wechselwirkungen mit dem Modell		thematisieren
Wechselwirkung	des Feldes (E6).		
Konzept der Aus-			
tauschteilchen vs.			
Feldkonzept			
(2 Ustd.)			
6 Ustd.	Summe		1

Inhaltsfeld: Relativität von Raum und Zeit (GK)

Kontext: Navigationssysteme

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Relativität der Zeit	interpretieren das Michelson-Morley-Experiment	Experiment von Michelson und	Ausgangsproblem: Exaktheit der Positions-
(5 Ustd.)	als ein Indiz für die Konstanz der Lichtgeschwin-	Morley (Computersimulation)	bestimmung mit Navigationssystemen
	digkeit (UF4),	Lichtuhr (Gedankenexperiment	Begründung der Hypothese von der Kon-
	erklären anschaulich mit der Lichtuhr grundle-	/ Computersimulation)	stanz der Lichtgeschwindigkeit mit dem
	gende Prinzipien der speziellen Relativitätstheo-	Myonenzerfall (Experi-	Ausgang des Michelson-Morley-
	rie und ermitteln quantitativ die Formel für die	mentepool der Universität Wup-	Experiments
	Zeitdilatation (E6, E7),	pertal)	Herleitung der Formel für die Zeitdilatation
	erläutern qualitativ den Myonenzerfalls in der		am Beispiel einer "bewegten Lichtuhr".
	Erdatmosphäre als experimentellen Beleg für die		Der Myonenzerfall in der Erdatmosphäre
	von der Relativitätstheorie vorhergesagte Zeitdi-		dient als experimentelle Bestätigung der
	latation (E5, UF1).		Zeitdilatation. Betrachtet man das Bezugs-
	erläutern die relativistische Längenkontraktion		system der Myonen als ruhend, kann die
	über eine Plausibilitätsbetrachtung (K3),		Längenkontraktion der Atmosphäre plausi-
	begründen mit der Lichtgeschwindigkeit als		bel gemacht werden.
	Obergrenze für Geschwindigkeiten von Objekten,		
	dass eine additive Überlagerung von Geschwin-		Die Formel für die Längenkontraktion wird
	digkeiten nur für "kleine" Geschwindigkeiten gilt		angegeben.
	(UF2),		
	erläutern die Bedeutung der Konstanz der Licht-		
	geschwindigkeit als Ausgangspunkt für die Ent-		
	wicklung der speziellen Relativitätstheorie (UF1),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
5 Ustd.	Summe		

Kontext: Teilchenbeschleuniger

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
"Schnelle" La-	erläutern die Funktionsweise eines Zyklotrons und	Zyklotron (in einer Simulation	Der Einfluss der Massenzunahme wird in
dungsträger in E-	argumentieren zu den Grenzen einer Verwendung	mit und ohne Massenveränder-	der Simulation durch das "Aus-dem-Takt-
und B-Feldern	zur Beschleunigung von Ladungsträgern bei Be-	lichkeit)	Geraten" eines beschleunigten Teilchens im
(2 Ustd.)	rücksichtigung relativistischer Effekte (K4, UF4),		Zyklotron ohne Rechnung veranschaulicht.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Ruhemasse und	erläutern die Energie-Masse Äquivalenz (UF1).	Film / Video	Die Formeln für die dynamische Masse und
dynamische Masse	zeigen die Bedeutung der Beziehung <i>E=mc</i> ² für		E=mc ² werden als deduktiv herleitbar ange-
(4 Ustd.)	die Kernspaltung und -fusion auf (B1, B3)		geben.
			Erzeugung und Vernichtung von Teilchen,
			Hier können Texte und Filme zu Hiroshima
			und Nagasaki eingesetzt werden.
6 Ustd.	Summe		

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Gegenseitige Be-	diskutieren die Bedeutung von Schlüsselexperi-	Lehrbuch, Film / Video	
dingung von Raum	menten bei physikalischen Paradigmenwechseln		
und Zeit	an Beispielen aus der Relativitätstheorie (B4, E7),		
(2 Ustd.)	beschreiben Konsequenzen der relativistischen		
	Einflüsse auf Raum und Zeit anhand anschauli-		
	cher und einfacher Abbildungen (K3)		
2 Ustd.	Summe		

2.1.2.3 Qualifikationsphase: Leistungskurs

Inhaltsfeld: Relativitätstheorie (LK)

Kontext: Satellitennavigation – Zeitmessung ist nicht absolut

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)			
	Die Schülerinnen und Schüler		
Konstanz der Licht-	begründen mit dem Ausgang des Michel-	Experiment von	Ausgangsproblem: Exaktheit der Posi-
geschwindigkeit und	son-Morley-Experiments die Konstanz der	Michelson und Morley	tionsbestimmung mit Navigationssystemen
Problem der Gleich-	Lichtgeschwindigkeit (UF4, E5, E6),	(Computersimulation)	Begründung der Hypothese von der Konstanz der
zeitigkeit	erläutern das Problem der relativen Gleich-	Relativität der Gleichzei-	Lichtgeschwindigkeit mit dem Ausgang des Michel-
Inertialsysteme	zeitigkeit mit in zwei verschiedenen Inertial-	tigkeit	son- und Morley-Experiments (Computersimulation).
Relativität der	systemen jeweils synchronisierten Uhren	(Video / Film)	Das Additionstheorem für relativistische Geschwindig-
Gleichzeitigkeit	(UF2),		keiten kann ergänzend ohne Herleitung angegeben
(4 Ustd.)	begründen mit der Lichtgeschwindigkeit als		werden.
	Obergrenze für Geschwindigkeiten von Ob-		
	jekten Auswirkungen auf die additive Über-		
	lagerung von Geschwindigkeiten (UF2).		
4 Ustd.	Summe		

Kontext: Höhenstrahlung

Leitfrage: Warum erreichen Myonen aus der oberen Atmo-sphäre die Erdoberfläche?

Inhaltliche Schwerpunkte: Zeitdilatation und Längenkontraktion

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)			
	Die Schülerinnen und Schüler		
Zeitdilatation und	leiten mithilfe der Konstanz der Lichtge-	Lichtuhr (Gedankenexpe-	Mit der Lichtuhr wird der relativistische Faktor γ herge-
relativistischer Fak-	schwindigkeit und des Modells Lichtuhr	riment / Computersimula-	leitet.
tor	quantitativ die Formel für die Zeitdilatation	tion)	
(2 Ustd., zusätzlich	her (E5),	Myonenzerfall (Experi-	Der Myonenzerfall in der Erdatmosphäre dient als eine
Exkursion)	reflektieren die Nützlichkeit des Modells	mentepool der Universität	experimentelle Bestätigung der Zeitdilatation.
	Lichtuhr hinsichtlich der Herleitung des rela-	- ggfs. Exkursion an eine	
	tivistischen Faktors (E7).	Universität)	
	erläutern die Bedeutung der Konstanz der		
	Lichtgeschwindigkeit als Ausgangspunkt für		
	die Entwicklung der speziellen Relativitäts-		
	theorie (UF1)		

Längenkontraktion	begründen den Ansatz zur Herleitung der	Myonenzerfall (Experi-	Der Myonenzerfall dient als experimentelle Bestäti-
(2 Ustd.)	Längenkontraktion (E6),	mentepool der Universität	gung der Längenkontraktion (im Vergleich zur Zeitdila-
	erläutern die relativistischen Phänomene	- ggfs. Exkursion an eine	tation) – s. o.
	Zeitdilatation und Längenkontraktion an-	Universität) – s. o.	Herleitung der Formel für die Längenkontraktion
	hand des Nachweises von in der oberen		
	Erdatmosphäre entstehenden Myonen		
	(UF1),		
	beschreiben Konsequenzen der relativisti-		
	schen Einflüsse auf Raum und Zeit anhand		
	anschaulicher und einfacher Abbildungen		
	(K3),		
4 Ustd.	Summe		

Kontext: Teilchenbeschleuniger – Warum Teilchen aus dem Takt geraten

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Relativistische Massenzunahme, Energie-Masse-Beziehung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

"Schnelle" Ladungs-	erläutern auf der Grundlage historischer	Bertozzi-Experiment	Hier würde sich eine Schülerpräsentation des Bertoz-
träger in E- und B-	Dokumente ein Experiment (Bertozzi-	(anhand von Literatur)	zi-Experiments anbieten.
Feldern	Versuch) zum Nachweis der relativistischen		Der Einfluss der Massenzunahme wird in einer Simu-
(4 Ustd.)	Massenzunahme (K2, K3),		lation durch das "Aus-dem-Takt-Geraten" eines be-
			schleunigten Teilchens im Zyklotron ohne Rechnung
			veranschaulicht.
			Die Formel für die dynamische Masse wird als deduk-
			tiv herleitbar angegeben.
Ruhemasse und dy-	erläutern die Energie-Masse-Beziehung		Die Differenz aus dynamischer Masse und Ruhemas-
namische Masse	(UF1)		se wird als Maß für die kinetische Energie eines Kör-
(2 Ustd.)	berechnen die relativistische kinetische		pers identifiziert.
	Energie von Teilchen mithilfe der Energie-		
	Masse-Beziehung (UF2)		
Bindungsenergie im	beschreiben die Bedeutung der Energie-	Historische Aufnahme von	Interpretation des Zusammenhangs zwischen Bin-
Atomkern	Masse-Äquivalenz hinsichtlich der Annihila-	Teilchenbahnen	dungsenergie pro Nukleon und der Kernspaltungs-
Annihilation	tion von Teilchen und Antiteilchen (UF4),		bzw. Kernfusionsenergie bei den entsprechenden Pro-
(2 Ustd.)	bestimmen und bewerten den bei der Anni-		zessen.
	hilation von Teilchen und Antiteilchen frei		Es können Filme zu Hiroshima und Nagasaki einge-
	werdenden Energiebetrag (E7, B1),		setzt werden.
	beurteilen die Bedeutung der Beziehung		Erzeugung und Vernichtung von Teilchen
	E=mc ² für Erforschung und technische Nut-		
	zung von Kernspaltung und Kernfusion (B1,		
	B3),		

8 Ustd.	Summe	
		1

Kontext: Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Leitfrage: Beeinflusst Gravitation den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Gravitation und	beschreiben qualitativ den Einfluss der Gravita-	Der Gang zweier Atomuh-	Dieser Unterrichtsabschnitt soll lediglich einen ers-
Zeitmessung	tion auf die Zeitmessung (UF4)	ren in unterschiedlicher	ten – qualitativ orientierten – Einblick in die Äquiva-
(2 Ustd.)		Höhe in einem Raum	lenz von Gravitation und gleichmäßig beschleu-
		(früheres Experimente der	nigten Bezugssystemen geben.
		PTB Braunschweig)	Elemente des Kontextes Satellitennavigation kön-
		Flug von Atomuhren um	nen genutzt werden, um sowohl die Zeitdilatation
		die Erde (Video)	(infolge der unterschiedlichen Geschwindigkeiten
			der Satelliten) als auch die Gravitationswirkung (in-
			folge ihres Aufenthalts an verschiedenen Orten im
			Gravitationsfeld der Erde) zu verdeutlichen.
Die Gleichheit von	veranschaulichen mithilfe eines einfachen ge-	Einsteins Fahrstuhl-	An dieser Stelle könnte eine Schülerpräsentation
träger und schwe-	genständlichen Modells den durch die Einwir-	Gedankenexperiment	erfolgen (mithilfe der Nutzung von Informationen
rer Masse (im	kung von massebehafteten Körpern hervorge-	Das Zwillingsparadoxon	und Animationen aus dem Internet)

Rahmen der heuti-	rufenen Einfluss der Gravitation auf die Zeit-	(mit Beschleunigungspha-
gen Messgenauig-	messung sowie die "Krümmung des Raums"	sen und Phasen der
keit)	(K3).	gleichförmigen Bewegung
(2 Ustd.)		Film / Video
4 Ustd.	Summe	

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion, Relativistische Massenzunahme, Energie-Masse-Beziehung, Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)			
	Die Schülerinnen und Schüler		
Gegenseitige Bedingung	bewerten Auswirkungen der Relativitätstheorie auf die Verän-	Lehrbuchtexte, Internetrecherche	Ggf. Schülervortrag
von Raum und Zeit	derung des physikalischen Weltbilds (B4).		
(2 Ustd.)			
2 Ustd.	Summe		

Inhaltsfeld: Elektrik (LK)

Kontext: Untersuchung von Elektronen

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder, Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,
- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Grundlagen:	erklären elektrostatische Phänomene und In-	einfache Versuche zur Rei-	An dieser Stelle sollte ein Rückgriff auf die S I
Ladungstrennung,	fluenz mithilfe grundlegender Eigenschaften	bungselektrizität – Anzie-	erfolgen.
Ladungsträger	elektrischer Ladungen (UF2, E6),	hung / Abstoßung,	Das Elektron soll als (ein) Träger der negativen
(4 Ustd.)		halbquantitative Versuche mit	Ladung benannt und seine Eigenschaften un-
		Hilfe eines Elektrometerver-	tersucht werden.
		stärkers:	
		Zwei aneinander geriebene	
		Kunststoffstäbe aus unter-	
		schiedlichen Materialien tra-	
		gen betragsmäßig gleiche,	
		aber entgegengesetzte La-	
		dungen,	
		Influenzversuche	

Kompetenzen	Experiment / Medium	Kommentar
Die Schülerinnen und Schüler		
beschreiben Eigenschaften und Wirkungen	Skizzen zum prinzipiellen	Die Versuchsidee "eines" Millikanversuchs wird
homogener elektrischer und magnetischer Fel-	Aufbau des Millikanversuchs,	erarbeitet.
der und erläutern die Definitionsgleichungen	realer Versuchsaufbau oder	Der Begriff des elektrischen Feldes und das
der entsprechenden Feldstärken (UF2, UF1),	entsprechende Medien	Feldlinienmodell werden eingeführt.
erläutern und veranschaulichen die Aussagen,	(z. B: RCL (remote control	Die elektrische Feldstärke in einem Punkt ei-
Idealisierungen und Grenzen von Feldlinien-	laboratory),	nes elektrischen Feldes, der Begriff "homoge-
modellen, nutzen Feldlinienmodelle zur Veran-	einfache Versuche und visu-	nes Feld" und die Spannung werden definiert.
schaulichung typischer Felder und interpretie-	elle Medien zur Veranschau-	
ren Feldlinienbilder (K3, E6, B4),	lichung elektrischer Felder im	
	Feldlinienmodell,	
	Plattenkondensator (homo-	
	genes E-Feld),	
leiten physikalische Gesetze (u.a. die im ho-	evtl. Apparatur zur Messung	Zusammenhang zwischen E und U im homoge-
mogenen elektrischen Feld gültige Beziehung	der Feldstärke gemäß der	nen Feld
zwischen Spannung und Feldstärke und den	Definition,	Bestimmung der Elementarladung mit Diskussi-
Term für die Lorentzkraft) aus geeigneten De-	Spannungsmessung am Plat-	on der Messgenauigkeit
finitionen und bekannten Gesetzen deduktiv	tenkondensator,	An dieser Stelle sollten Übungsaufgaben erfol-
her (E6, UF2),	Bestimmung der Elementar-	gen, z.B. auch zum Coulomb'schen Gesetz.
entscheiden für Problemstellungen aus der	ladung mit dem Millikanver-	Dieses kann auch nur per Plausibilitätsbetrach-
Elektrik, ob ein deduktives oder ein experimen-	such	tung eingeführt werden.
telles Vorgehen sinnvoller ist (B4, UF2, E1),		
	Die Schülerinnen und Schüler beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimen-	Die Schülerinnen und Schüler beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimen-

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Bestimmung der	erläutern an Beispielen den Stellenwert expe-	Fadenstrahlrohr (zunächst)	Die Frage nach der Masse eines Elektrons
Masse eines Elekt-	rimenteller Verfahren bei der Definition physi-	zur Erarbeitung der Ver-	führt zu weiteren Überlegungen.
rons:	kalischer Größen (elektrische und magnetische	suchsidee,	Als Versuchsidee wird (evtl. in Anlehnung an
magnetische Felder,	Feldstärke) und geben Kriterien zu deren Beur-	(z.B.) Stromwaage zur De-	astronomischen Berechnungen in der EF) die
Feldlinien,	teilung an (z.B. Genauigkeit, Reproduzierbar-	monstration der Kraftwirkung	Auswertung der Daten einer erzwungenen
potentielle Energie	keit, Unabhängigkeit von Ort und Zeit) (B1,	auf stromdurchflossene Leiter	Kreisbewegung des Teilchens erarbeitet.
im elektrischen	B4),	im Magnetfeld sowie zur Ver-	Dazu wird der Begriff des magnetischen Feldes
Feld,	treffen im Bereich Elektrik Entscheidungen für	anschaulichung der Definition	eingeführt sowie die Veranschaulichung mag-
Energie bewegter	die Auswahl von Messgeräten (Empfindlichkeit,	der magnetischen Feldstärke,	netischer Felder (inkl. Feldlinienmodell) erarbei-
Ladungsträger,	Genauigkeit, Auflösung und Messrate) im Hin-	Versuche mit z.B. Oszil-	tet.
Elektronenmasse	blick auf eine vorgegebene Problemstellung	loskop, Fadenstrahlrohr, al-	Definition der magnetischen Feldstärke, Defini-
(10 Ustd.)	(B1),	tem (Monochrom-) Röhren-	tion des homogenen Magnetfeldes,
	beschreiben qualitativ die Erzeugung eines	monitor o. ä. zur Demonstra-	Kraft auf stromdurchflossene Leiter im Magnet-
	Elektronenstrahls in einer Elektronenstrahlröh-	tion der Lorentzkraft,	feld, Herleitung der Formel für die Lorentzkraft,
	re (UF1, K3),	Fadenstrahlrohr zur <i>e/m</i> –	
	ermitteln die Geschwindigkeitsänderung eines	Bestimmung (das Problem	
	Ladungsträgers nach Durchlaufen einer Span-	der Messung der magneti-	
	nung (auch relativistisch) (UF2, UF4, B1),	schen Feldstärke wird ausge-	
		lagert.)	

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	erläutern den Feldbegriff und zeigen dabei		
	Gemeinsamkeiten und Unterschiede zwischen		
	Gravitationsfeld, elektrischem und magneti-		
	schem Feld auf (UF3, E6),		Ein Verfahren zur Beschleunigung der Elektro-
	entscheiden für Problemstellungen aus der		nen sowie zur Bestimmung ihrer Geschwindig-
	Elektrik, ob ein deduktives oder ein experimen-		keit wird erarbeitet.
	telles Vorgehen sinnvoller ist (B4, UF2, E1),		
	erläutern und veranschaulichen die Aussagen,		
	Idealisierungen und Grenzen von Feldlinien-		
	modellen, nutzen Feldlinienmodelle zur Veran-		
	schaulichung typischer Felder und interpretie-		
	ren Feldlinienbilder (K3, E6, B4),		
	bestimmen die relative Orientierung von Be-		
	wegungsrichtung eines Ladungsträgers, Mag-		
	netfeldrichtung und resultierender Kraftwirkung		
	mithilfe einer Drei-Finger-Regel (UF2, E6),		
	leiten physikalische Gesetze (Term für die Lor-		
	entzkraft) aus geeigneten Definitionen und be-		
	kannten Gesetzen deduktiv her (E6, UF2),		
	beschreiben qualitativ und quantitativ die Be-		
	wegung von Ladungsträgern in homogenen		
62	elektrischen und magnetischen Feldern sowie		
	in gekreuzten Feldern (Wien-Filter, Hall-Effekt)		
	(E1, E2, E3, E4, E5 UF1, UF4),		
	schließen aus spezifischen Bahnkurvendaten		
	bei der e/m-Bestimmung und beim Massen-		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
24 Ustd.	Summe		

Kontext: Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

Leitfrage: Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder "Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Anwendungen in	beschreiben qualitativ und quantitativ die Bewe-	Hallsonde,	Das Problem der Messung der Stärke
Forschung und	gung von Ladungsträgern in homogenen elektri-	Halleffektgerät,	des magnetischen Feldes der Helmholt-
Technik:	schen und magnetischen Feldern sowie in ge-	diverse Spulen, deren Felder	zspulen (e/m – Bestimmung) wird wieder
Bewegung von La-	kreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2,	vermessen werden (insbesonde-	aufgegriffen,
dungsträgern in Fel-	E3, E4, E5 UF1, UF4),	re lange Spulen und Helmholtz-	Vorstellung des Aufbaus einer Hallsonde
dern	erstellen, bei Variation mehrerer Parameter, Tabel-	spulen),	und Erarbeitung der Funktionsweise ei-
(12 Ustd.)	len und Diagramme zur Darstellung von Messwer-	Elektronenstrahlablenkröhre	ner Hallsonde,
	ten aus dem Bereich der Elektrik (K1, K3, UF3),	visuelle Medien und Computer-	Veranschaulichung mit dem Halleffekt-
	beschreiben qualitativ die Erzeugung eines Elekt-	simulationen (ggf. RCLs) zum	gerät (Silber),
	ronenstrahls in einer Elektronenstrahlröhre (UF1,	Massenspektrometer, Zyklotron	Kalibrierung einer Hallsonde,
	K3),	und evtl. weiteren Teilchenbe-	Messungen mit der Hallsonde, u.a.
	ermitteln die Geschwindigkeitsänderung eines La-	schleunigern	nachträgliche Vermessung des Helm-
	dungsträgers nach Durchlaufen einer Spannung		holtzspulenfeldes,
	(auch relativistisch) (UF2, UF4, B1),		Bestimmung der magnetischen Feldkon-
	schließen aus spezifischen Bahnkurvendaten beim		stante,
	Massenspektrometer auf wirkende Kräfte sowie		Arbeits- und Funktionsweisen sowie die
	Eigenschaften von Feldern und bewegten La-		Verwendungszwecke diverser Elektro-
	dungsträgern, (E5, UF2),		nenröhren, Teilchenbeschleuniger und
	erläutern den Feldbegriff und zeigen dabei Ge-		eines Massenspektrometers werden un-
	meinsamkeiten und Unterschiede zwischen Gravi-		tersucht.
	tationsfeld, elektrischem und magnetischem Feld		
65	auf (UF3, E6),		
	erläutern den Einfluss der relativistischen Massen-		
	zunahme auf die Bewegung geladener Teilchen im		
	Zyklotron (E6, UF4),		
	leiten physikalische Gesetze aus geeigneten Defi-		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	entscheiden für Problemstellungen aus der Elekt-		
	rik, ob ein deduktives oder ein experimentelles		
	Vorgehen sinnvoller ist (B4, UF2, E1),		
	wählen Definitionsgleichungen zusammengesetz-		
	ter physikalischer Größen sowie physikalische Ge-		
	setze (u.a. Coulomb'sches Gesetz, Kraft auf einen		
	stromdurchflossenen Leiter im Magnetfeld, Lorent-		
	zkraft, Spannung im homogenen E-Feld) problem-		
	bezogen aus (UF2),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Moderne messtech-	erläutern an Beispielen den Stellenwert experi-	diverse Kondensatoren (als La-	Kondensatoren werden als Ladungs-/
nische Verfahren	menteller Verfahren bei der Definition physikali-	dungs-/ Energiespeicher),	Energiespeicher vorgestellt (z.B. bei
sowie Hilfsmittel zur	scher Größen (elektrische und magnetische Feld-	Aufbaukondensatoren mit der	elektronischen Geräten wie Computern).
Mathematisierung:	stärke) und geben Kriterien zu deren Beurteilung	Möglichkeit die Plattenfläche	Die (Speicher-) Kapazität wird definiert
Auf- und Entladung	an (z.B. Genauigkeit, Reproduzierbarkeit, Unab-	und den Plattenabstand zu vari-	und der Zusammenhang zwischen Ka-
von Kondensatoren,	hängigkeit von Ort und Zeit) (B1, B4),	ieren,	pazität, Plattenabstand und Plattenfläche
Energie des elektri-	erläutern und veranschaulichen die Aussagen,	statische Voltmeter bzw. Elekt-	für den Plattenkondensator (deduktiv mit
schen Feldes	Idealisierungen und Grenzen von Feldlinienmodel-	rometermessverstärker,	Hilfe der Grundgleichung des elektri-
(10 Ustd.)	len, nutzen Feldlinienmodelle zur Veranschauli-	Schülerversuche zur Auf- und	schen Feldes) ermittelt.
	chung typischer Felder und interpretieren Feldlini-	Entladung von Kondensatoren	Plausibilitätsbetrachtung zur Grund-
	enbilder (K3, E6, B4),	sowohl mit großen Kapazitäten	gleichung des elektrischen Feldes im
	entscheiden für Problemstellungen aus der Elekt-	(Messungen mit Multimeter) als	Feldlinienmodell,
	rik, ob ein deduktives oder ein experimentelles	auch mit kleineren Kapazitäten	Ermittlung der elektrischen Feldkonstan-
	Vorgehen sinnvoller ist (B4, UF2, E1),	(Messungen mit Hilfe von Mess-	te (evtl. Messung),
	wählen Definitionsgleichungen zusammengesetz-	werterfassungssystemen),	Auf- und Entladevorgänge bei Konden-
	ter physikalischer Größen sowie physikalische Ge-	Computer oder GTR/CAS-	satoren werden messtechnisch erfasst,
	setze (u.a. Coulomb'sches Gesetz, Kraft auf einen	Rechner zur Messwertverarbei-	computerbasiert ausgewertet und mithil-
	stromdurchflossenen Leiter im Magnetfeld, Lorent-	tung	fe von Differentialgleichungen beschrie-
	zkraft, Spannung im homogenen <i>E</i> -Feld) problem-		ben.
	bezogen aus (UF2),		deduktive Herleitung der im elektrischen
	leiten physikalische Gesetze aus geeigneten Defi-		Feld eines Kondensators gespeicherten
67	nitionen und bekannten Gesetzen deduktiv her		elektrischen Energie
	(E6, UF2),		
	ermitteln die in elektrischen bzw. magnetischen		
	Feldern gespeicherte Energie (Kondensator)		
	(UF2),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	treffen im Bereich Elektrik Entscheidungen für die		
	Auswahl von Messgeräten (Empfindlichkeit, Ge-		
	nauigkeit, Auflösung und Messrate) im Hinblick auf		
	eine vorgegebene Problemstellung (B1),		
	wählen begründet mathematische Werkzeuge zur		
	Darstellung und Auswertung von Messwerten im		
	Bereich der Elektrik (auch computergestützte gra-		
	phische Darstellungen, Linearisierungsverfahren,		
	Kurvenanpassungen), wenden diese an und be-		
	werten die Güte der Messergebnisse (E5, B4),		
22 Ustd.	Summe		1

Kontext: Erzeugung, Verteilung und Bereitstellung elektrischer Energie

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Induktion, das grund-	entscheiden für Problemstellungen aus der Elekt-	Medien zur Information über	Leiterschaukelversuch evtl. auch im Hin-
legende Prinzip bei	rik, ob ein deduktives oder ein experimentelles	prinzipielle Verfahren zur Erzeu-	blick auf die Registrierung einer gedämpf-
der Versorgung mit	Vorgehen sinnvoller ist (B4, UF2, E1),	gung, Verteilung und Bereitstel-	ten mechanischen Schwingung auswert-
elektrischer Energie:	wählen Definitionsgleichungen zusammengesetz-	lung elektrischer Energie,	bar,
Induktionsvorgänge,	ter physikalischer Größen sowie physikalische Ge-	Bewegung eines Leiters im	Gleich- und Wechselspannungsgenerato-
Induktionsgesetz,	setze (u.a. Coulomb'sches Gesetz, Kraft auf einen	Magnetfeld - Leiterschaukel,	ren werden nur qualitativ behandelt.
Lenz'sche Regel,	stromdurchflossenen Leiter im Magnetfeld, Lorent-	einfaches elektrodynamisches	Das Induktionsgesetz in seiner allgemei-
Energie des magne-	zkraft, Spannung im homogenen E-Feld) problem-	Mikrofon,	nen Form wird erarbeitet:
tischen Feldes	bezogen aus (UF2),	Gleich- und Wechsel-	1. Flächenänderung (deduktive Herlei-
(22 Ustd.)	leiten physikalische Gesetze aus geeigneten Defi-	spannungsgeneratoren (verein-	tung)
	nitionen und bekannten Gesetzen deduktiv her	fachte Funktionsmodelle für Un-	2. Änderung der Feldgröße B (quantitati-
	(E6, UF2),	terrichtszwecke)	ves Experiment)
	planen und realisieren Experimente zum Nachweis	quantitativer Versuch zur elekt-	Drehung einer Leiterschleife (qualitative
	der Teilaussagen des Induktionsgesetzes (E2, E4,	romagnetischen Induktion bei	Betrachtung)
	E5),	Änderung der Feldgröße B, re-	Der magnetische Fluss wird definiert, das
	führen das Auftreten einer Induktionsspannung auf	gistrierende Messung von B(t)	Induktionsgesetz als Zusammenfassung
	die zeitliche Änderung der von einem Leiter über-	und U _{ind} (t),	und Verallgemeinerung der Ergebnisse
	strichenen gerichteten Fläche in einem Magnetfeld	"Aufbau-" Transformatoren zur	formuliert.
	zurück (u.a. bei der Erzeugung einer Wechsel-	Spannungswandlung	qualitative Deutung des Versuchsergeb-
	spannung) (E6),		nisses zur Selbstinduktion
	erstellen, bei Variation mehrerer Parameter, Tabel-		
70	len und Diagramme zur Darstellung von Messwer-		
	ten aus dem Bereich der Elektrik (K1, K3, UF3),		
	treffen im Bereich Elektrik Entscheidungen für die		
	Auswahl von Messgeräten (Empfindlichkeit, Ge-		
	nauigkeit, Auflösung und Messrate) im Hinblick auf		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	wählen begründet mathematische Werkzeuge zur	Modellversuch zu einer "Über-	Deduktive Herleitung des Terms für die
	Darstellung und Auswertung von Messwerten im	landleitung" (aus CrNi-Draht) mit	Selbstinduktionsspannung einer langen
	Bereich der Elektrik (auch computer-gestützte gra-	zwei "Trafo-Stationen", zur Un-	Spule (ausgehend vom Induktionsgesetz),
	phische Darstellungen, Linearisierungsverfahren,	tersuchung der Energieverluste	Interpretation des Vorzeichens mit Hilfe
	Kurvenanpassungen), wenden diese an und be-	bei unterschiedlich hohen Span-	der Lenz'schen Regel
	werten die Güte der Messergebnisse (E5, B4),	nungen,	Definition der Induktivität,
	ermitteln die in magnetischen Feldern gespeicher-	Versuch (qualitativ und quantita-	messtechnische Erfassung und compu-
	te Energie (Spule) (UF2),	tiv) zur Demonstration der	terbasierte Auswertung von Ein- und Aus-
	bestimmen die Richtungen von Induktionsströmen	Selbstinduktion (registrierende	schaltvorgängen bei Spulen
	mithilfe der Lenz'schen Regel (UF2, UF4, E6),	Messung und Vergleich der Ein-	deduktive Herleitung der im magnetischen
	begründen die Lenz'sche Regel mithilfe des Ener-	und Ausschaltströme in paralle-	Feld einer Spule gespeicherten magneti-
	gie- und des Wechselwirkungskonzeptes (E6, K4),	len Stromkreisen mit rein ohm-	schen Energie
		scher bzw. mit induktiver Last),	
		Versuche zur Demonstration der	
		Wirkung von Wirbelströmen,	
		diverse "Ringversuche"	
22 Ustd.	Summe		

Kontext: Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

Leitfrage: Wie können Nachrichten ohne Materietransport übermittelt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Schwingungen und Wellen

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern.
- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E4) Experimente mit komplexen Versuchsplänen und Versuchsaufbauten, auch historisch bedeutsame Experimente, mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Der elektromagneti-	erläutern die Erzeugung elektromagnetischer	MW-Radio aus Aufbauteilen der	Zur Einbindung der Inhalte in den Kon-
sche Schwingkreis –	Schwingungen, erstellen aussagekräftige Dia-	Elektriksammlung mit der Möglich-	text wird zunächst ein Mittelwellenradio
das Basiselement	gramme und werten diese aus (E2, E4, E5, B1),	keit, die modulierte Trägerschwin-	aus Aufbauteilen der Elektriksammlung
der Nachrichten-	treffen im Bereich Elektrik Entscheidungen für	gung (z.B. oszilloskopisch) zu re-	vorgestellt.
technik:	die Auswahl von Messgeräten (Empfindlichkeit,	gistrieren,	Der Schwingkreis als zentrale Funkti-
Elektromagnetische	Genauigkeit, Auflösung und Messrate) im Hin-	einfache Resonanzversuche (auch	onseinheit des MW-Radios: Es kann
Schwingungen im	blick auf eine vorgegebene Problemstellung	aus der Mechanik / Akustik),	leicht gezeigt werden, dass durch Ver-
RLC-Kreis,	(B1),		änderung von L bzw. C der Schwing-
Energieumwand-	erläutern qualitativ die bei einer ungedämpften		kreis so "abgestimmt" werden kann,
lungsprozesse im	elektromagnetischen Schwingung in der Spule		dass (z.B. oszilloskopisch) eine modu-
RLC-Kreis	und am Kondensator ablaufenden physikali-		lierte Trägerschwingung registriert wer-
(12 Ustd.)	schen Prozesse (UF1, UF2),		den kann, also der Schwingkreis "von
	beschreiben den Schwingvorgang im RLC-Kreis		außen" angeregt wird.
	qualitativ als Energieumwandlungsprozess und		Die Analogie zu mechanischen Reso-
	benennen wesentliche Ursachen für die Dämp-		nanzversuchen wird aufgezeigt.
	fung (UF1, UF2, E5),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	wählen begründet mathematische Werkzeuge	RLC - Serienschwingkreis	Die zentrale Funktionseinheit "Schwing-
	zur Darstellung und Auswertung von Messwer-	insbesondere mit registrierenden	kreis" wird genauer untersucht.
	ten im Bereich der Elektrik (auch computer-	Messverfahren und computerge-	Spannungen und Ströme im RCL -
	gestützte graphische Darstellungen, Linearisie-	stützten Auswerteverfahren,	Kreis werden zeitaufgelöst registriert,
	rungsverfahren, Kurvenanpassungen), wenden		die Diagramme sind Grundlage für die
	diese an und bewerten die Güte der Messergeb-	ggf. Meißner- oder Dreipunkt-	qualitative Beschreibung der Vorgänge
	nisse (E5, B4),	Rückkopplungsschaltung zur Er-	in Spule und Kondensator.
	entscheiden für Problemstellungen aus der	zeugung / Demonstration	Quantitativ wird nur die ungedämpfte
	Elektrik, ob ein deduktives oder ein experimen-	entdämpfter elektromagnetischer	Schwingung beschrieben (inkl. der Her-
	telles Vorgehen sinnvoller ist (B4, UF2, E1),	Schwingungen	leitung der Thomsonformel).
	wählen Definitionsgleichungen zusammenge-		Die Möglichkeiten zur mathematischen
	setzter physikalischer Größen sowie physikali-		Beschreibung gedämpfter Schwingun-
	sche Gesetze problembezogen aus (UF2),		gen sowie Möglichkeiten der Entdämp-
	leiten physikalische Gesetze aus geeigneten De-		fung / Rückkopplung können kurz und
	finitionen und bekannten Gesetzen deduktiv her		rein qualitativ angesprochen werden.
	(E6, UF2).		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Materiefreie Über-	beschreiben den Hertz'schen Dipol als einen (of-	L-C-Kreis, der sich mit einem mag-	Erinnerung an die Anregung des MW-
tragung von Infor-	fenen) Schwingkreis (UF1, UF2, E6),	netischen Wechselfeld über eine	Radio-Schwingkreises durch "Radiowel-
mation und Energie:	erläutern qualitativ die Entstehung eines elektri-	"Antenne" zu Schwingungen anre-	len" zur Motivation der Erforschung so-
Entstehung und	schen bzw. magnetischen Wirbelfelds bei B-	gen lässt,	genannter elektromagnetischer Wellen,
Ausbreitung elektro-	bzw. E-Feldänderung und die Ausbreitung einer	dm-Wellen-Sender mit Zubehör	Das Phänomen der elektromagnetische
magnetischer Wel-	elektromagnetischen Welle (UF1, UF4, E6),	(Empfängerdipol, Feldindikatorlam-	Welle, ihre Erzeugung und Ausbreitung
len,	beschreiben qualitativ die lineare Ausbreitung	pe),	werden erarbeitet.
Energietransport	harmonischer Wellen als räumlich und zeitlich	Visuelle Medien zur Veranschauli-	Übergang vom Schwingkreis zum
und Informations-	periodischen Vorgang (UF1, E6),	chung der zeitlichen Änderung der	Hertz'schen Dipol durch Verkleinerung
über-tragung durch	erläutern anhand schematischer Darstellungen	E- und B-Felder beim Hertz'schen	von L und C,
elektro-magnetische	Grundzüge der Nutzung elektromagnetischer	Dipol, entsprechende Computersi-	Überlegungen zum "Ausbreitungsme-
Wellen,	Trägerwellen zur Übertragung von Informationen	mulationen,	chanismus" elektromagnetischer Wellen:
(16 Ustd.)	(K2, K3, E6).	Ringentladungsröhre (zur Vertie-	Induktion findet auch ohne Leiter
	ermitteln auf der Grundlage von Brechungs-,	fung der elektromagnetischen In-	("Induktionsschleife") statt!
	Beugungs- und Interferenzerscheinungen (mit	duktion),	• (Z.B.) Versuch zur Demonstration
	Licht- und Mikrowellen) die Wellenlängen und	visuelle Medien zur magneto-	des Magnetfeldes um stromdurch-
	die Lichtgeschwindigkeit (E2, E4, E5).	elektrischen Induktion,	flossene Leiter, über die ein Kon-
	beschreiben die Phänomene Reflexion, Bre-	Visuelle Medien zur Veranschauli-	densator aufgeladen wird.
	chung, Beugung und Interferenz im Wellenmo-	chung der Ausbreitung einer elekt-	Auch im Bereich zwischen den Kon-
	dell und begründen sie qualitativ mithilfe des	romagnetischen Welle, entspre-	densatorplatten existiert ein magne-
	Huygens'schen Prinzips (UF1, E6).	chende Computersimulationen,	tisches Wirbelfeld.
75	erläutern konstruktive und destruktive Interferenz	Versuche mit dem dm-Wellen-	
	sowie die entsprechenden Bedingungen mithilfe	Sender (s.o.),	
	geeigneter Darstellungen (K3, UF1),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
_	entscheiden für Problemstellungen aus der	Visuelle Medien zur Veranschauli-	Beugungs-, Brechungs- und Interfe-
	Elektrik, ob ein deduktives oder ein experimen-	chung der Ausbreitung einer linea-	renzerscheinungen zum Nachweis des
	telles Vorgehen sinnvoller ist (B4, UF2, E1),	ren (harmonischen) Welle,	Wellencharakters elektromagnetischer
	leiten physikalische Gesetze aus geeigneten De-	auch Wellenmaschine zur Erinne-	Wellen,
	finitionen und bekannten Gesetzen deduktiv her	rung an mechanische Wellen, ent-	
	(E6, UF2),	sprechende Computersimulationen,	
	beschreiben die Interferenz an Doppelspalt und	Wellenwanne	
	Gitter im Wellenmodell und leiten die entspre-	Mikrowellensender / -empfänger	
	chenden Terme für die Lage der jeweiligen Ma-	mit Gerätesatz für Beugungs-, Bre-	
	xima n-ter Ordnung her (E6, UF1, UF2),	chungs- und Interferenzexperimen-	
	wählen Definitionsgleichungen zusammenge-	te,	
	setzter physikalischer Größen sowie physikali-	Interferenz-, Beugungs- und Bre-	
	sche Gesetze problembezogen aus (UF2),	chungsexperimente mit (Laser-)	
	erstellen, bei Variation mehrerer Parameter, Ta-	Licht an Doppelspalt und Gitter	
	bellen und Diagramme zur Darstellung von	(quantitativ) –	
	Messwerten (K1, K3, UF3).	sowie z.B. an Kanten, dünnen	
		Schichten, (qualitativ)	
28 Ustd.	Summe		

Inhaltsfeld: Quantenphysik (LK)

Kontext: Erforschung des Photons

Leitfrage: Besteht Licht doch aus Teilchen?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte, Welle-Teilchen-Dualismus, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Lichtelektrischer	diskutieren und begründen das Versagen der	Entladung einer positiv bzw. ne-	Qualitative Demonstration des Photoeffekts
Effekt	klassischen Modelle bei der Deutung quantenphy-	gativ geladenen (frisch ge-	
(1 Ustd.)	sikalischer Prozesse (K4, E6)	schmirgelten) Zinkplatte mithilfe	
	legen am Beispiel des Photoeffekts und seiner	des Lichts einer Hg-Dampf-	
	Deutung dar, dass neue physikalische Experimen-	Lampe (ohne und mit UV-	
	te und Phänomene zur Veränderung des physika-	absorbierender Glasscheibe)	
	lischen Weltbildes bzw. zur Erweiterung oder		
	Neubegründung physikalischer Theorien und Mo-		
	delle führen können (E7),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Teilcheneigen-	erläutern die qualitativen Vorhersagen der klassi-	1. Versuch zur h-Bestimmung:	Spannungsbestimmung mithilfe Kon-
schaften von Pho-	schen Elektrodynamik zur Energie von Photo-	Gegenspannungsmethode (Hg-	densatoraufladung erwähnen
tonen	elektronen (bezogen auf die Frequenz und Inten-	Linien mit Cs-Diode)	
Planck'sches Wir-	sität des Lichts) (UF2, E3),	2. Versuch zur h-Bestimmung:	
kungsquantum	erläutern den Widerspruch der experimentellen	Mit Simulationsprogramm (in	
(7 Ustd.)	Befunde zum Photoeffekt zur klassischen Physik	häuslicher Arbeit)	
	und nutzen zur Erklärung die Einstein'sche Licht-		
	quantenhypothese (E6, E1),		Wenn genügend Zeit zur Verfügung steht,
	diskutieren das Auftreten eines Paradigmenwech-		kann an dieser Stelle auch der Compton-
	sels in der Physik am Beispiel der quantenme-		Effekt behandelt werden:
	chanischen Beschreibung von Licht und Elektro-		Bedeutung der Anwendbarkeit der (mecha-
	nen im Vergleich zur Beschreibung mit klassi-		nischen) Stoßgesetze hinsichtlich der Zu-
	schen Modellen (B2, E7),		ordnung eines Impulses für Photonen
	beschreiben und erläutern Aufbau und Funktions-		Keine detaillierte (vollständig relativistische)
	weise von komplexen Versuchsaufbauten (u.a.		Rechnung im Unterricht notwendig, Rech-
	zur h-Bestimmung und zur Elektronenbeugung)		nung ggf. als Referat vorstellen lassen
	(K3, K2),		
	ermitteln aus den experimentellen Daten eines		
	Versuchs zum Photoeffekt das Planck'sche Wir-		
	kungsquantum (E5, E6),		
10 Ustd.	Summe		,

Kontext: Röntgenstrahlung, Erforschung des Photons

Leitfrage: Was ist Röntgenstrahlung?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Röntgenröhre	beschreiben den Aufbau einer Röntgenröhre (UF1),	Röntgenröhre der Schul-	Die Behandlung der Röntgenstrahlung
Röntgenspektrum		röntgeneinrichtung	erscheint an dieser Stelle als "Einschub"
(2 Ustd.)		Sollte keine Röntgenröhre zur Verfügung stehen, kann mit ei-	in die Reihe zur Quantenphysik sinnvoll, obwohl sie auch zu anderen Sachberei-
		nem interaktiven Bildschirmexperiment (IBE) gearbeitet werden (z.B. http://www.mackspace.de/untericht/simulationen physik/quantenphysik/sv/roentgen.php oder http://www.uni- du- e.de/physik/ap/iabe/roentgen	chen Querverbindungen hat und dort durchgeführt werden könnte (z.B. "Physik der Atomhülle") Zu diesem Zeitpunkt müssen kurze Sachinformationen zum Aufbau der Atomhülle und den Energiezuständen der Hüllelektronen gegeben (recherchiert) werden. Das IBE sollte für die häusliche Arbeit genutzt werden.
		b10/roentgen b10 uebersicht. html)	
Bragg'sche Reflexi-	erläutern die Bragg-Reflexion an einem Einkristall	Aufnahme eines Röntgen-	Die Bragg'sche Reflexionsbedingung ba-
onsbedingung	und leiten die Bragg'sche Reflexionsbedingung her	spektrums (Winkel-Inten-	siert auf Welleninterpretation, die Regist-
(2 Ustd.)	(E6),	sitätsdiagramm vs. Wellen-	rierung der Röntgenstrahlung mithilfe des
		längen-Intensitätsdiagramm)	Detektors hat den Teilchenaspekt im Vordergrund

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Planck'sches Wir-	deuten die Entstehung der kurzwelligen Röntgen-		Eine zweite Bestimmungsmethode für
kungsquantum	strahlung als Umkehrung des Photoeffekts (E6),		das Planck'sche Wirkungsquantum
(1 Ustd.)			
Strukturanalyse mit-			Schülerreferate mit Präsentationen zur
hilfe der Drehkris-			Debye-Scherrer-Methode
tallmethode			
Strukturanalyse			
nach Debye-			
Scherrer			
(2 Ustd.)			
Röntgenröhre in	führen Recherchen zu komplexeren Fragestellungen	Film / Video / Foto	Schülerreferate mit Präsentationen an-
Medizin und Tech-	der Quantenphysik durch und präsentieren die Er-	Schülervorträge auf fachlich	hand Literatur- und Internetrecherchen
nik	gebnisse (K2, K3),	angemessenem Niveau (mit	Ggf. Exkursion zum Röntgenmuseum in
(2 Ustd.)		adäquaten fachsprachlichen	Lennep
		Formulierungen)	Ggf. Exkursion zur radiologischen Ab-
			teilung des Krankenhauses (die aber
			auch in Rahmen der Kernphysik (s. dort:
			"Biologische Wirkung ionisierender Strah-
			lung") durchgeführt werden kann)
9 Ustd.	Summe		

Kontext: Erforschung des Elektrons

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Wellencharakter	interpretieren experimentelle Beobachtungen an	Qualitative Demonstrationen	Hinweise auf erlaubte nichtrelativistische Be-
von Elektronen	der Elektronenbeugungsröhre mit den Wellenei-	mit der Elektronenbeugungs-	trachtung (bei der verwendeten Elektronen-
(2 Ustd.)	genschaften von Elektronen (E1, E5, E6),	röhre	beugungsröhre der Schule)
		Qualitative Demonstrationen mit-	
		hilfe RCL (Uni Kaiserslautern:	
		http://rcl-	
		munich.informatik.unibw-	
		muenchen.de/)	

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Streuung und Beu-	beschreiben und erläutern Aufbau und Funkti-	Quantitative Messung mit der	Herausstellen der Bedeutung der
gung von Elektro-	onsweise von komplexen Versuchsaufbauten	Elektronenbeugungsröhre	Bragg'schen Reflexionsbedingung für (Rönt-
nen	(u.a. zur h-Bestimmung und zur Elektronenbeu-		gen-) Photonen wie für Elektronen mit Blick
De Broglie-	gung) (K3, K2),		auf den Wellenaspekt von Quantenobjekten
Hypothese	erklären die de Broglie-Hypothese am Beispiel		Dabei Betonung der herausragenden Bedeu-
(4 Ustd.)	von Elektronen (UF1),		tung der de Broglie-Gleichung für die quanti-
			tative Beschreibung der (lichtschnellen und
			nicht lichtschneller) Quantenobjekte
6 Ustd.	Summe		1

Kontext: Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

Leitfrage: Was ist anders im Mikrokosmos?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
linearer Potential-	deuten das Quadrat der Wellenfunktion qualitativ als		Auf die Anwendbarkeit des Potentialtopf-
topf	Maß für die Aufenthaltswahrscheinlichkeit von Elekt-		Modells bei Farbstoffmolekülen wird hin-
Energiewerte im li-	ronen (UF1, UF4),		gewiesen.
nearen Potentialtopf	ermitteln die Wellenlänge und die Energiewerte von		Die Anwendbarkeit des (mechanischen)
(4 Ustd.)	im linearen Potentialtopf gebundenen Elektronen		Modells der stehenden Welle kann inso-
	(UF2, E6).		fern bestätigt werden, als dass die für die
			stehenden Wellen sich ergebende DGI
			mit derjenigen der (zeitunabhängigen)
			Schrödinger-DGI strukturell überein-
			stimmt.
			Ein Ausblick auf die Schrödinger-
			Gleichung genügt.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Wellenfunktion und	erläutern die Aufhebung des Welle-Teilchen-	Demonstration des Durch-	
Aufenthalts-	Dualismus durch die Wahrscheinlichkeitsinterpretati-	gangs eines einzelnen Quan-	
wahrscheinlichkeit	on (UF1, UF4),	tenobjekts durch einen Dop-	
(4 Ustd.)	erläutern die Bedeutung von Gedankenexperimenten	pelspalt mithilfe eines Simula-	
	und Simulationsprogrammen zur Erkenntnisgewin-	tionsprogramms und mithilfe	
	nung bei der Untersuchung von Quantenobjekten	von Videos	
	(E6, E7).		
	erläutern bei Quantenobjekten das Auftreten oder		
	Verschwinden eines Interferenzmusters mit dem Be-		
	griff der Komplementarität (UF1, E3),		
	diskutieren das Auftreten eines Paradigmenwechsels		
	in der Physik am Beispiel der quantenmechanischen		
	Beschreibung von Licht und Elektronen im Vergleich		
	zur Beschreibung mit klassischen Modellen (B2, E7),		
	stellen anhand geeigneter Phänomene dar, wann		
	Licht durch ein Wellenmodell bzw. ein Teilchenmodell		
	beschrieben werden kann (UF1, K3, B1),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Heisenberg´sche	erläutern die Aussagen und die Konsequenzen der		Die Heisenberg'sche Unschärferelation
Unschärferelation	Heisenberg´schen Unschärferelation (Ort-Impuls,		kann (aus fachlicher Sicht) plausibel ge-
(2 Ustd.)	Energie-Zeit) an Beispielen (UF1, K3),		macht werden aufgrund des sich aus der
	bewerten den Einfluss der Quantenphysik im Hinblick		Interferenzbedingung ergebenden Quer-
	auf Veränderungen des Weltbildes und auf Grundan-		impulses eines Quantenobjekts, wenn
	nahmen zur physikalischen Erkenntnis (B4, E7).		dieses einen Spalt passiert.
10 Ustd.	Summe		1

Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik (LK)

Kontext: Geschichte der Atommodelle, Lichtquellen und ihr Licht

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Atomaufbau

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Atomaufbau:	geben wesentliche Schritte in der historischen	Recherche in Literatur und In-	Diverse Atommodelle (Antike bis Anfang
Kern-Hülle-Modell	Entwicklung der Atommodelle bis hin zum Kern-	ternet	20. Jhd.)
(2 Ustd.)	Hülle-Modell wieder (UF1),		
		Rutherford'scher Streuversuch	Per Arbeitsblatt oder Applet (z.B
			http://www.schulphysik.de/java/physlet/appl
			ets/rutherford.html)
Energiequantelung	erklären Linienspektren in Emission und Absorp-	Linienspektren, Franck-Hertz-	Linienspektren deuten auf diskrete Ener-
der Hüllelektronen	tion sowie den Franck-Hertz-Versuch mit der	Versuch	gien hin
(3 Ustd.)	Energiequantelung in der Atomhülle (E5),		
Linienspektren	stellen die Bedeutung des Franck-Hertz-Versuchs	Durchstrahlung einer Na-	Demonstrationsversuch, Arbeitsblatt
(3 Ustd.)	und der Experimente zu Linienspektren in Bezug	Flamme mit Na- und Hg-Licht	
	auf die historische Bedeutung des Bohr'schen	(Schattenbildung), Linienspek-	
	Atommodells dar (E7).	tren von H	
Bohr'sche Postulate	formulieren geeignete Kriterien zur Beurteilung	Literatur, Arbeitsblatt	Berechnung der Energieniveaus,
(2 Ustd.)	des Bohr´schen Atommodells aus der Perspekti-		Bohr'scher Radius
	ve der klassischen und der Quantenphysik (B1,		
	B4),		
10 Ustd.	Summe		

Kontext: Physik in der Medizin (Bildgebende Verfahren, Radiologie)

Leitfrage: Wie nutzt man Strahlung in der Medizin?

Inhaltliche Schwerpunkte: Ionisierende Strahlung, Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Ionisierende Strah-	benennen Geiger-Müller-Zählrohr und Halb-	Geiger-Müller-Zählrohr, Ar-	Ggf. Schülermessungen mit Zählrohren (All-
lung:	leiterdetektor als experimentelle Nachweismög-	beitsblatt	tagsgegenstände, Nulleffekt , Präparate etc.)
Detektoren	lichkeiten für ionisierende Strahlung und unter-	Nebelkammer	Demonstration der Nebelkammer, ggf. Schü-
(3 Ustd.)	scheiden diese hinsichtlich ihrer Möglichkeiten		lerbausatz
	zur Messung von Energien (E6),		Material zu Halbleiterdetektoren

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Strahlungsarten	erklären die Ablenkbarkeit von ionisierenden	Absorption von α -, β -, γ -	Ggf. Absorption und Ablenkung in Schüler-
(5 Ustd.)	Strahlen in elektrischen und magnetischen Fel-	Strahlung	experimenten
	dern sowie die Ionisierungsfähigkeit und Durch-	Ablenkung von β-Strahlen im	
	dringungsfähigkeit mit ihren Eigenschaften	Magnetfeld	
	(UF3),	Literatur (zur Röntgen- , Neut-	
	erklären die Entstehung des Bremsspektrums	ronen- und Schwerionenstrah-	
	und des charakteristischen Spektrums der Rönt-	lung)	
	genstrahlung (UF1),		
	benennen Geiger-Müller-Zählrohr und Halb-		
	leiterdetektor als experimentelle Nachweismög-		
	lichkeiten für ionisierende Strahlung und unter-		
	scheiden diese hinsichtlich ihrer Möglichkeiten		
	zur Messung von Energien (E6),		
	erläutern das Absorptionsgesetz für Gamma-		
	Strahlung, auch für verschiedene Energien		
	(UF3),		
Dosimetrie	erläutern in allgemein verständlicher Form be-	Video zur Dosimetrie	
(2 Ustd.)	deutsame Größen der Dosimetrie (Aktivität,	Auswertung von Berichten über	
	Energie- und Äquivalentdosis) auch hinsichtlich	Unfälle im kerntechnischen Be-	
	der Vorschriften zum Strahlenschutz (K3),	reich	

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Bildgebende Ver-	stellen die physikalischen Grundlagen von Rönt-	Schülervorträge auf fachlich	Nutzung von Strahlung zur Diagnose und zur
fahren	genaufnahmen und Szintigrammen als bildge-	angemessenem Niveau (mit	Therapie bei Krankheiten des Menschen
(4 Ustd.)	bende Verfahren dar (UF4),	adäquaten fachsprachlichen	(von Lebewesen) sowie zur Kontrolle bei
	beurteilen Nutzen und Risiken ionisierender	Formulierungen)	technischen Anlagen
	Strahlung unter verschiedenen Aspekten (B4),	Ggf. Exkursion zur radiologi-	
		schen Abteilung des Kranken-	
		hauses	
14 Ustd.	Summe		

Kontext: (Erdgeschichtliche) Altersbestimmungen

Leitfrage: Wie funktioniert die 14C-Methode? Inhaltliche Schwerpunkte: Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Radioaktiver Zerfall:	benennen Protonen und Neutronen als Kern-	Ausschnitt aus Nuklidkarte	Aufbauend auf Physik- und Chemieunter-
Kernkräfte	bausteine, identifizieren Isotope und erläutern		reicht der S I
(1 Ustd.)	den Aufbau einer Nuklidkarte (UF1),		
Zerfallsprozesse	identifizieren natürliche Zerfallsreihen sowie	Elektronische Nuklidkarte	Umgang mit einer Nuklidkarte
(7 Ustd.)	künstlich herbeigeführte Kernumwandlungspro-		
	zesse mithilfe der Nuklidkarte (UF2),		
	entwickeln Experimente zur Bestimmung der	Radon-Messung im Schulkeller	Siehe http://www.physik-
	Halbwertszeit radioaktiver Substanzen (E4, E5),	(Zentralabitur 2008)	box.de/radon/radonseite.html
			Ggf. Auswertung mit Tabellenkalkulation
			durch Schüler
	nutzen Hilfsmittel, um bei radioaktiven Zerfällen	Tabellenkalkulation	Linearisierung, Quotientenmethode, Halb-
	den funktionalen Zusammenhang zwischen Zeit		wertszeitabschätzung, ggf. logarithmische
	und Abnahme der Stoffmenge sowie der Aktivität		Auftragung
	radioaktiver Substanzen zu ermitteln (K3),		
	leiten das Gesetz für den radioaktiven Zerfall	Ggf. CAS	Ansatz analog zur quantitativen Beschrei-
	einschließlich eines Terms für die Halbwertszeit		bung von Kondensatorentladungen
	her (E6),		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Altersbestimmung	bestimmen mithilfe des Zerfallsgesetzes das Al-	Arbeitsblatt	Ggf. Uran-Blei-Datierung
(2 Ustd.)	ter von Materialien mit der C14-Methode (UF2),		
10 Ustd.	Summe		

Kontext: Energiegewinnung durch nukleare Prozesse

Leitfrage: Wie funktioniert ein Kernkraftwerk?

Inhaltliche Schwerpunkte: Kernspaltung und Kernfusion, Ionisierende Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernspaltung und	bewerten den Massendefekt hinsichtlich seiner	Video zu Kernwaffenexplosion	Z.B. YouTube
Kernfusion:	Bedeutung für die Gewinnung von Energie (B1),		
Massendefekt,	bewerten an ausgewählten Beispielen Rollen		
Äquivalenz von	und Beiträge von Physikerinnen und Physikern		
Masse und Energie,	zu Erkenntnissen in der Kern- und Elementarteil-		
Bindungsenergie	chenphysik (B1),		
(2 Ustd.)			
Kettenreaktion	erläutern die Entstehung einer Kettenreaktion als	Mausefallenmodell, Video, App-	Videos zum Mausefallenmodell sind im Netz
(2 Ustd.)	relevantes Merkmal für einen selbstablaufenden	let	(z.B. bei YouTube) verfügbar
	Prozess im Nuklearbereich (E6),		
	beurteilen Nutzen und Risiken von Kernspaltung		
	und Kernfusion anhand verschiedener Kriterien		
	(B4),		
Kernspaltung, Kern-	beschreiben Kernspaltung und Kernfusion unter	Diagramm B/A gegen A, Tabel-	Z.B. http://www.leifiphysik.de
fusion	Berücksichtigung von Bindungsenergien (quanti-	lenwerk, ggf. Applet	
(5 Ustd.)	tativ) und Kernkräften (qualitativ) (UF4),		
	hinterfragen Darstellungen in Medien hinsichtlich	Recherche in Literatur und In-	Siehe
	technischer und sicherheitsrelevanter Aspekte	ternet	http://www.sn.schule.de/~sud/methodenkom
	der Energiegewinnung durch Spaltung und Fusi-	Schülerdiskussion, ggf. Fish	pendium/module/2/1.htm
	on (B3, K4).	Bowl, Amerikanische Debatte,	
		Pro-Kontra-Diskussion	

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
9 Ustd.	Summe		

Kontext: Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Elementarteilchen und ihre Wechselwirkungen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(K2) zu physikalischen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernbausteine und	systematisieren mithilfe des heutigen Standard-	Existenz von Quarks (Video)	Da in der Schule kaum Experimente zum
Elementarteilchen	modells den Aufbau der Kernbausteine und er-	Internet (CERN / DESY)	Thema "Elementarteilchenphysik" vorhan-
(4 Ustd.)	klären mit ihm Phänomene der Kernphysik		den sind, sollen besonders Rechercheauf-
	(UF3),		gaben und Präsentationen im Unterricht ge-
			nutzt werden.
			Internet: http://project-
			physicsteaching.web.cern.ch/project-
			physicsteaching/german/
			Ggf. Schülerreferate

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kernkräfte	vergleichen das Modell der Austauschteilchen im	Darstellung der Wechselwirkung	Besonderer Hinweis auf andere Sichtweise
Austauschteilchen	Bereich der Elementarteilchen mit dem Modell	mit Feynman-Graphen (anhand	der "Kraftübertragung": Feldbegriff vs. Aus-
der fundamentalen	des Feldes (Vermittlung, Stärke und Reichweite	von Literatur)	tauschteilchen
Wechselwirkungen	der Wechselwirkungskräfte) (E6).		Die Bedeutung der Gleichung E=mc² (den
(4 Ustd.)	erklären an Beispielen Teilchenumwandlungen		SuS bekannt aus Relativitätstheorie) in Ver-
	im Standardmodell mithilfe der Heisenberg'schen		bindung mit der Heisenberg'schen Unschär-
	Unschärferelation und der Energie-Masse-		ferelation in der Form $\Delta E \cdot \Delta t \ge h$ (den SuS
	Äquivalenz (UF1).		bekannt aus Elementen der Quantenphysik)
			für die Möglichkeit des kurzzeitigen Entste-
			hens von Austauschteilchen ist herauszu-
			stellen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Aktuelle Forschung	recherchieren in Fachzeitschriften, Zeitungsarti-	Literatur und Recherche im In-	Hier muss fortlaufend berücksichtigt wer-
und offene Fragen	keln bzw. Veröffentlichungen von Forschungs-	ternet	den, welches der aktuelle Stand der For-
der Elementarteil-	einrichtungen zu ausgewählten aktuellen Ent-	"CERN-Rap":	schung in der Elementarteilchenphysik ist
chenphysik	wicklungen in der Elementarteilchenphysik (K2),	http://www.youtube.com/watch?	(derzeit: Higgs-Teilchen, Dunkle Materie,
(z.B. Higgs-		v=7VshToyoGl8	Dunkle Energie, Asymmetrie zwischen Ma-
Teilchen, Dunkle			terie und Antimaterie,)
Materie, Dunkle			Der CERN-Rap gibt eine für Schülerinnen
Energie, Asymmet-			und Schüler motivierend dargestellte Über-
rie zwischen Materie			sicht über die aktuelle Forschung im Be-
und Antimaterie,)			reich der Elementarteilchenphysik
(3 Ustd.)			
11 Ustd.	Summe		

